West Nile virus positive blood donation and subsequent entomological investigation, Austria, 2014
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
25961567
PubMed Central
PMC4427133
DOI
10.1371/journal.pone.0126381
PII: PONE-D-14-51912
Knihovny.cz E-zdroje
- MeSH
- Culex virologie MeSH
- dárci krve * MeSH
- dospělí MeSH
- epidemiologické monitorování MeSH
- fylogeneze MeSH
- hmyz - vektory virologie MeSH
- lidé MeSH
- molekulární typizace MeSH
- myši inbrední ICR MeSH
- myši MeSH
- polymerázová řetězová reakce MeSH
- polyproteiny genetika MeSH
- virové proteiny genetika MeSH
- virus západního Nilu klasifikace genetika izolace a purifikace MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- západonilská horečka diagnóza přenos virologie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rakousko MeSH
- Názvy látek
- polyproteiny MeSH
- virové proteiny MeSH
The detection of West Nile virus (WNV) nucleic acid in a blood donation from Vienna, Austria, as well as in Culex pipiens pupae and egg rafts, sampled close to the donor's residence, is reported. Complete genomic sequences of the human- and mosquito-derived viruses were established, genetically compared and phylogenetically analyzed. The viruses were not identical, but closely related to each other and to recent Czech and Italian isolates, indicating co-circulation of related WNV strains within a confined geographic area. The detection of WNV in a blood donation originating from an area with low WNV prevalence in humans (only three serologically diagnosed cases between 2008 and 2014) is surprising and emphasizes the importance of WNV nucleic acid testing of blood donations even in such areas, along with active mosquito surveillance programs.
Austrian Red Cross Blood Service for Vienna Lower Austria and Burgenland Vienna Austria
Department of Public Health Austrian Agency for Health and Food Safety Vienna Austria
Institute of Vertebrate Biology Academy of Sciences of the Czech Republic v v i Brno Czech Republic
Technical Office of Ecology and Landscape Assessment Persenbeug Austria
Zobrazit více v PubMed
Pachler K, Lebl K, Berer D, Rudolf I, Hubálek Z, Nowotny N. Putative new West Nile virus lineage in Uranotaenia unguiculata mosquitoes, Austria, 2013. Emerg Infect Dis. 2014;20(12): 2119–2122. 10.3201/eid2012.140921 PubMed DOI PMC
Gray TJ, Webb CE. A review of the epidemiological and clinical aspects of West Nile virus. Int J Gen Med. 2014;7: 193–203. 10.2147/IJGM.S59902 PubMed DOI PMC
Hubálek Z, Rudolf I, Nowotny N. Arboviruses pathogenic for domestic and wild animals. Adv Virus Res. 2014;89: 201–275. 10.1016/B978-0-12-800172-1.00005-7 PubMed DOI
Kolodziejek J, Marinov M, Kiss BJ, Alexe V, Nowotny N. The complete sequence of a West Nile virus lineage 2 strain detected in a Hyalomma marginatum marginatum tick collected from a song thrush (Turdus philomelos) in Eastern Romania in 2013 revealed closest genetic relationship to strain Volgograd 2007. PLoS One 2014;9(10): e109905 10.1371/journal.pone.0109905 PubMed DOI PMC
Bakonyi T, Ferenczi E, Erdélyi K, Kutasi O, Csörgő T, Seidel B, et al. Explosive spread of a neuroinvasive lineage 2 West Nile virus in central Europe, 2008/2009. Vet Microbiol. 2013;165(1–2): 61–70. 10.1016/j.vetmic.2013.03.005 PubMed DOI
Wodak E, Richter S, Bagó Z, Revilla-Fernández S, Weissenböck H, Nowotny N, et al. Detection and molecular analysis of West Nile virus infections in birds of prey in the eastern part of Austria in 2008 and 2009. Vet Microbiol. 2011;149(3–4): 358–366. 10.1016/j.vetmic.2010.12.012 PubMed DOI
Stiasny K, Aberle SW, Heinz FX. Retrospective identification of human cases of West Nile virus infection in Austria (2009 to 2010) by serological differentiation from Usutu and other flavivirus infections. Euro Surveill. 2013;18(43). pii: 20614. PubMed
Nowotny N, Kolodziejek J. Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013. Euro Surveill. 2014;19(16): 20781 PubMed
Hubálek Z, Halouzka J, Juricová Z, Sikutová S, Rudolf I, Honza M, et al. Serologic survey of birds for West Nile flavivirus in southern Moravia (Czech Republic). Vector-Borne Zoonot Dis. 2008;8: 659–66. 10.1089/vbz.2007.0283 PubMed DOI
Mohrig W. Die Culiciden Deutschlands. Untersuchungen zur Taxonomie, Biologie, und Ökologie der einheimischen Stechmücken. – Parasitologische Schriftenreihe 1969;18: 1–260. [in German].
Rudolf I, Bakonyi T, Sebesta O, Mendel J, Pesko J, Betášová L, et al. West Nile virus lineage 2 isolated from Culex modestus mosquitoes in the Czech Republic, 2013: expansion of the European WNV endemic area to the North? Euro Surveill. 2014;19(31). pii: 20867. PubMed
Bakonyi T, Ivanics E, Erdélyi K, Ursu K, Ferenczi E, Weissenböck H, et al. Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerg Infect Dis. 2006;12(4): 618–623. PubMed PMC
Shirato K, Miyoshi H, Goto A, Ako Y, Ueki T, Kariwa H, et al. Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol. 2004;85:3637–45. 10.1099/vir.0.80247-0 PubMed DOI
Scherret JH, Mackenzie JS, Khromykh AA, Hall RA. Biological significance of glycosylation of the envelope protein of Kunjin virus. Ann N Y Acad Sci. 2001;951:361–363. PubMed
Whiteman MC, Wicker JA, Kinney RM, Huang CYH, Solomon T, Barrett ADT. Multiple amino acid changes at the first glycosylation motif in NS1 protein of West Nile virus are necessary for complete attenuation for mouse neuroinvasiveness. Vaccine 2011;29:9702–10. 10.1016/j.vaccine.2011.09.036 PubMed DOI
Brault AC, Huang CY, Langevin SA, Kinney RM, Bowen RA, Ramey WN, et al. A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet. 2007;39(9): 1162–1166. PubMed PMC
Hall RA, Khromykh AA, Mackenzie JM, Scherret JH, Khromykh TI, Mackenzie JS. Loss of dimerisation of the nonstructural protein NS1 of Kunjin virus delays viral replication and reduces virulence in mice, but still allows secretion of NS1. Virology 1999;264(1): 66–75. PubMed
Kolodziejek J, Pachler K, Bin H, Mendelson E, Shulman L, Orshan L, et al. Barkedji virus, a novel mosquito-borne flavivirus identified in Culex perexiguus mosquitoes, Israel, 2011. J Gen Virol. 2013;94: 2449–2457. 10.1099/vir.0.056200-0 PubMed DOI
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9. 10.1093/molbev/ PubMed DOI PMC
Toma L, Mancini F, Di Luca M, Cecere JG, Bianchi R, Khoury C, et al. Detection of microbial agents in ticks collected from migratory birds in central Italy. Vector Borne Zoonotic Dis. 2014;14: 199–205. 10.1089/vbz.2013.1458 PubMed DOI PMC
McMullen AR, Albayrak H, May FJ, Davis CT, Beasley DW, Barrett AD. Molecular evolution of lineage 2 West Nile virus. J Gen Virol. 2013;94: 318–325. 10.1099/vir.0.046888-0 PubMed DOI PMC
Pealer LN, Marfin AA, Petersen LR, Lanciotti RS, Page PL, Stramer SL, et al. Transmission of West Nile virus through blood transfusion in the United States in 2002. N Engl J Med. 2002;349: 1236–1245. PubMed
Iwamoto M, Jernigan DB, Guasch A, Trepka MJ, Blackmore CG, Hellinger WC, et al. Transmission of West Nile virus from an organ donor to four transplant recipients. N Engl J Med. 2003;348: 2196–2203. PubMed
Kleinman SH, Williams JD, Robertson G, Caglioti S, Williams RC, Spizman R, et al. West Nile virus testing experience in 2007: evaluation of different criteria for triggering individual–donation nucleic acid testing. Transfusion 2009;49(6): 1160–1170. 10.1111/j.1537-2995.2009.02127.x PubMed DOI
Popović N, Milošević B, Urošević A, Poluga J, Lavadinović L, Nedelijković J, et al. Outbreak of West Nile virus infection among humans in Serbia, August to October 2012. Euro Surveill. 2013;18(43). pii: 20613. PubMed
Papa A, Bakonyi T, Xanthopoulou K, Vázquez A, Tenorio A, Nowotny N. Genetic characterization of West Nile virus lineage 2, Greece, 2010. Emerg Infect Dis. 2011;17(5): 920–922. 10.3201/eid1705.101759 PubMed DOI PMC
Bagnarelli P, Marinelli K, Trotta D, Monachetti A, Tavio M, Del Gobbo R, et al. Human case of autochthonous West Nile virus lineage 2 infection in Italy, September 2011. Euro Surveill. 2011;16(43). pii: 20002. PubMed
Platonov AE, Fedorova MV, Karan LS, Shopenskaya TA, Platonova OV, Zhuravlev VI. Epidemiology of West Nile infection in Volgograd, Russia, in relation to climate change and mosquito (Diptera: Culicidae) bionomics. Parasitol Res. 2008;103 Suppl 1: 45–53. 10.1007/s00436-008-1050-0 PubMed DOI
Sirbu A, Ceianu CS, Panculescu-Gatej RI, Vazquez A, Tenorio A, Rebreanu R, et al. Outbreak of West Nile virus infection in humans, Romania, July to October 2010. Euro Surveill. 2011;16(2): pii = 19762. PubMed
Papa A. West Nile virus infections in Greece: An update. Expert Rev Anti-infect Ther. 2012;10: 743–750. 10.1586/eri.12.59 PubMed DOI
Napoli C, Bella A, Declich S, Grazzini G, Lombardini L, Nanni Costa A, et al. Integrated human surveillance systems of West Nile virus infections in Italy: The 2012 experience. Int J Environ Res Public Health 2013;10: 7180–7192. 10.3390/ijerph10127180 PubMed DOI PMC
Prince HE, Tobler LH, Lapé-Nixon M, Foster GA, Stramer SL, Busch MP. Development and persistence of West Nile virus-specific immunoglobulin M (IgM), IgA, and IgG in viremic blood donors. J Clin Microbiol. 2005;43(9):4316–4320. 10.1128/JCM.43.9.4316-4320.2005 PubMed DOI PMC
Szentpáli-Gavallér K, Antal L, Tóth M, Kemenesi G, Soltész Z, Ádám D, et al. Monitoring of West Nile virus in mosquitoes between 2011–2012 in Hungary. Vector Borne Zoonotic Dis. 2014;14(9): 648–655. 10.1089/vbz.2013.1549 PubMed DOI PMC
Nelms BM, Fechter-Leggett E, Carroll BD, Macedo P, Kluh S, Reisen WK. Experimental and natural vertical transmission of West Nile virus by California Culex (Diptera: Culicidae) mosquitoes. J Med Entomol. 2013;50(2): 371–378. PubMed
Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West Nile virus: biology, transmission, and human infection. Clin Microbiol Rev. 2012;25(4):635–648. 10.1128/CMR.00045-12 PubMed DOI PMC
Gómez-Díaz E, Figuerola J. New perspectives in tracing vector-borne interaction networks. Trends Parasitol. 2010;26(10):470–6. 10.1016/j.pt.2010.06.007 Epub 2010 Jun 26. PubMed DOI
Anderson JF, Main AJ. Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the Northeastern United States. J Infect Dis. 2006;194(11):1577–9. Epub 2006 Oct 18. PubMed
West Nile Virus and Tick-Borne Encephalitis Virus Are Endemic in Equids in Eastern Austria
West Nile virus in overwintering mosquitoes, central Europe