DYNC2LI1 mutations broaden the clinical spectrum of dynein-2 defects
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26130459
PubMed Central
PMC4486972
DOI
10.1038/srep11649
PII: srep11649
Knihovny.cz E-zdroje
- MeSH
- cilie metabolismus MeSH
- cytoplazmatické dyneiny chemie genetika MeSH
- exom genetika MeSH
- fibroblasty metabolismus MeSH
- fluorescenční protilátková technika MeSH
- heterozygot MeSH
- lidé MeSH
- mutace genetika MeSH
- nesmyslný kodon genetika MeSH
- sekvenční analýza DNA MeSH
- terciární struktura proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytoplazmatické dyneiny MeSH
- DYNC2LI1 protein, human MeSH Prohlížeč
- nesmyslný kodon MeSH
Skeletal ciliopathies are a heterogeneous group of autosomal recessive osteochondrodysplasias caused by defects in formation, maintenance and function of the primary cilium. Mutations in the underlying genes affect the molecular motors, intraflagellar transport complexes (IFT), or the basal body. The more severe phenotypes are caused by defects of genes of the dynein-2 complex, where mutations in DYNC2H1, WDR34 and WDR60 have been identified. In a patient with a Jeune-like phenotype we performed exome sequencing and identified compound heterozygous missense and nonsense mutations in DYNC2LI1 segregating with the phenotype. DYNC2LI1 is ubiquitously expressed and interacts with DYNC2H1 to form the dynein-2 complex important for retrograde IFT. Using DYNC2LI1 siRNA knockdown in fibroblasts we identified a significantly reduced cilia length proposed to affect cilia function. In addition, depletion of DYNC2LI1 induced altered cilia morphology with broadened ciliary tips and accumulation of IFT-B complex proteins in accordance with retrograde IFT defects. Our results expand the clinical spectrum of ciliopathies caused by defects of the dynein-2 complex.
Animal Physiology Friedrich Alexander Universität Erlangen Nürnberg Erlangen Germany
Department of Human Genetics Radboud University Medical Center Nijmegen Netherlands
Institute of Biochemistry Friedrich Alexander Universität Erlangen Nürnberg Erlangen Germany
Institute of Human Genetics Friedrich Alexander Universität Erlangen Nürnberg Erlangen Germany
Zobrazit více v PubMed
Fry A. M., Leaper M. J. & Bayliss R. The primary cilium: guardian of organ development and homeostasis. Organogenesis 10, 62–68 (2014). PubMed PMC
Goetz S. C. & Anderson K. V. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11, 331–344 (2010). PubMed PMC
Satir P., Pedersen L. B. & Christensen S. T. The primary cilium at a glance. J Cell Sci 123, 499–503 (2010). PubMed PMC
Satir P. & Christensen S. T. Overview of structure and function of mammalian cilia. Annu Rev Physiol 69, 377–400 (2007). PubMed
van Reeuwijk J., Arts H. H. & Roepman R. Scrutinizing ciliopathies by unraveling ciliary interaction networks. Hum Mol Genet 20, R149–R157 (2011). PubMed
Sasai N. & Briscoe J. Primary cilia and graded Sonic Hedgehog signaling. Wiley interdisciplinary reviews. Developmental biology 1, 753–772 (2012). PubMed
Oh E. C. & Katsanis N. Context-dependent regulation of Wnt signaling through the primary cilium. J Am Soc Nephrol 24, 10–18 (2013). PubMed
Sebbagh M. & Borg J. P. Insight into planar cell polarity. Exp Cell Res 328, 284–295 (2014). PubMed
Neugebauer J. M., Amack J. D., Peterson A. G., Bisgrove B. W. & Yost H. J. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458, 651–654 (2009). PubMed PMC
Leitch C. C., Lodh S., Prieto-Echague V., Badano J. L. & Zaghloul N. A. Basal body proteins regulate Notch signaling through endosomal trafficking. J Cell Sci 127, 2407–2419 (2014). PubMed PMC
Boehlke C. et al.. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 12, 1115–1122 (2010). PubMed PMC
Schneider L. et al.. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15, 1861–1866 (2005). PubMed
Kim M., Kim M., Lee M. S., Kim C. H. & Lim D. S. The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun 5, 5370 (2014). PubMed
Gerdes J. M., Davis E. E. & Katsanis N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 137, 32–45 (2009). PubMed PMC
Eggenschwiler J. T. & Anderson K. V. Cilia and developmental signaling. Annu Rev Cell Dev Biol 23, 345–373 (2007). PubMed PMC
Ishikawa H. & Marshall W. F. Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12, 222–234 (2011). PubMed
Pedersen L. B., Veland I. R., Schroder J. M. & Christensen S. T. Assembly of primary cilia. Dev Dyn 237, 1993–2006 (2008). PubMed
Czarnecki P. G. & Shah J. V. The ciliary transition zone: from morphology and molecules to medicine. Trends Cell Biol 22, 201–210 (2012). PubMed PMC
Reiter J. F., Blacque O. E. & Leroux M. R. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 13, 608–618 (2012). PubMed PMC
Pedersen L. B., Schroder J. M., Satir P. & Christensen S. T. The ciliary cytoskeleton. Comprehensive Physiology 2, 779–803 (2012). PubMed
Santos N. & Reiter J. F. Building it up and taking it down: the regulation of vertebrate ciliogenesis. Dev Dyn 237, 1972–1981 (2008). PubMed PMC
Pedersen L. B. & Rosenbaum J. L. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 85, 23–61 (2008). PubMed
Avasthi P. & Marshall W. F. Stages of ciliogenesis and regulation of ciliary length. Differentiation; research in biological diversity 83, S30–S42 (2012). PubMed PMC
D’Angelo A. & Franco B. The dynamic cilium in human diseases. Pathogenetics 2, 3 (2009). PubMed PMC
Huber C. & Cormier-Daire V. Ciliary disorder of the skeleton. Am J Med Genet C Semin Med Genet 160c, 165–174 (2012). PubMed
Schmidts M. et al.. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease. Hum Mutat 34, 714–724 (2013). PubMed PMC
Halbritter J. et al.. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet 93, 915–925 (2013). PubMed PMC
Huber C. et al.. WDR34 mutations that cause short-rib polydactyly syndrome type III/severe asphyxiating thoracic dysplasia reveal a role for the NF-kappaB pathway in cilia. Am J Hum Genet 93, 926–931 (2013). PubMed PMC
Schmidts M. et al.. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am J Hum Genet 93, 932–944 (2013). PubMed PMC
McInerney-Leo A. M. et al.. Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60. Am J Hum Genet 93, 515–523 (2013). PubMed PMC
Bergmann C. Educational paper: ciliopathies. Eur J Pediatr 171, 1285–1300 (2012). PubMed PMC
Warman M. L. et al.. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155A, 943–968 (2011). PubMed PMC
Panda A., Gamanagatti S., Jana M. & Gupta A. K. Skeletal dysplasias: A radiographic approach and review of common non-lethal skeletal dysplasias. World journal of radiology 6, 808–825 (2014). PubMed PMC
Asante D., Stevenson N. L. & Stephens D. J. Subunit composition of the human cytoplasmic dynein-2 complex. J Cell Sci 127, 4774–4787 (2014). PubMed PMC
Pfister K. K. et al.. Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet 2, e1 (2006). PubMed PMC
Abou Jamra R. et al.. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. American journal of human genetics 88, 788–795 (2011). PubMed PMC
Abou Jamra R. et al.. Homozygosity mapping in 64 Syrian consanguineous families with non-specific intellectual disability reveals 11 novel loci and high heterogeneity. European journal of human genetics : EJHG 19, 1161–1166 (2011). PubMed PMC
Hoischen A. et al.. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 42, 483– 485 PubMed
Krawitz P. M. et al.. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42, 827–829 (2010). PubMed
Ng S. B. et al.. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42, 790–793 (2010). PubMed PMC
Zahnleiter D. et al.. MAP4-dependent regulation of microtubule formation affects centrosome, cilia, and golgi architecture as a central mechanism in growth regulation. Hum Mutat 36, 87–97 (2015). PubMed
Leipe D. D., Koonin E. V. & Aravind L. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343, 1–28 (2004). PubMed
Pampliega O. et al.. Functional interaction between autophagy and ciliogenesis. Nature 502, 194–200 (2013). PubMed PMC
Valente E. M., Rosti R. O., Gibbs E. & Gleeson J. G. Primary cilia in neurodevelopmental disorders. Nature reviews. Neurology 10, 27–36 (2014). PubMed PMC
Yang S. S., Roth J. A. & Langer L. O. Jr. Short rib syndrome Beemer-Langer type with polydactyly: a multiple congenital anomalies syndrome. Am J Med Genet 39, 243–246 (1991). PubMed
Elcioglu N. H. & Hall C. M. Diagnostic dilemmas in the short rib-polydactyly syndrome group. Am J Med Genet 111, 392–400 (2002). PubMed
Jeune M., Beraud C. & Carron R. [Asphyxiating thoracic dystrophy with familial characteristics]. Archives francaises de pediatrie 12, 886–891 (1955). PubMed
Baujat G. & Le Merrer M. Ellis-van Creveld syndrome. Orphanet J Rare Dis 2, 27 (2007). PubMed PMC
van Dam T. J. et al.. The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium. Cilia 2, 7 (2013). PubMed PMC
Davis E. E. & Katsanis N. The ciliopathies: a transitional model into systems biology of human genetic disease. Curr Opin Genet Dev 22, 290–303 (2012). PubMed PMC
Geremek M. et al.. Gene expression studies in cells from primary ciliary dyskinesia patients identify 208 potential ciliary genes. Hum Genet 129, 283–293 (2011). PubMed
Inglis P. N., Boroevich K. A. & Leroux M. R. Piecing together a ciliome. Trends Genet 22, 491–500 (2006). PubMed
Rana A. A. et al.. Targeted deletion of the novel cytoplasmic dynein mD2LIC disrupts the embryonic organiser, formation of the body axes and specification of ventral cell fates. Development 131, 4999–5007 (2004). PubMed
Grissom P. M., Vaisberg E. A. & McIntosh J. R. Identification of a novel light intermediate chain (D2LIC) for mammalian cytoplasmic dynein 2. Mol Biol Cell 13, 817–829 (2002). PubMed PMC
Krock B. L., Mills-Henry I. & Perkins B. D. Retrograde intraflagellar transport by cytoplasmic dynein-2 is required for outer segment extension in vertebrate photoreceptors but not arrestin translocation. Investigative ophthalmology & visual science 50, 5463–5471 (2009). PubMed PMC
Perrone C. A. et al.. A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in chlamydomonas and Mammalian cells. Mol Biol Cell 14, 2041–2056 (2003). PubMed PMC
Mikami A. et al.. Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells. J Cell Sci 115, 4801–4808 (2002). PubMed
Madhivanan K. & Aguilar R. C. Ciliopathies: the trafficking connection. Traffic 15, 1031–1056 (2014). PubMed PMC
Merrill A. E. et al.. Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am J Hum Genet 84, 542–549 (2009). PubMed PMC
May S. R. et al.. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 287, 378–389 (2005). PubMed
Schmidts M. et al.. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet 50, 309–323 (2013). PubMed PMC
St-Jacques B., Hammerschmidt M. & McMahon A. P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13, 2072–2086 (1999). PubMed PMC
Anderson E., Peluso S., Lettice L. A. & Hill R. E. Human limb abnormalities caused by disruption of hedgehog signaling. Trends Genet 28, 364–373 (2012). PubMed
DePristo M. A. et al.. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43, 491–498 (2011). PubMed PMC
McKenna A. et al.. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303 (2010). PubMed PMC
Li H. & Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC
Wang K., Li M. & Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic acids research 38, e164 (2010). PubMed PMC
Kumar P., Henikoff S. & Ng P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols 4, 1073–1081 (2009). PubMed
Adzhubei I. A. et al.. A method and server for predicting damaging missense mutations. Nat Methods 7, 248–249 (2010). PubMed PMC
Schwarz J. M., Rodelsperger C., Schuelke M. & Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7, 575–576 (2010). PubMed
Genomes Project, C. et al.. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012). PubMed PMC
Robinson J. T. et al.. Integrative genomics viewer. Nat Biotechnol 29, 24–26 (2011). PubMed PMC
Thorvaldsdottir H., Robinson J. T. & Mesirov J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in bioinformatics 14, 178–192 (2013). PubMed PMC
McDowall J. & Hunter S. InterPro protein classification. Methods Mol Biol 694, 37–47 (2011). PubMed
Kurowski M. A. & Bujnicki J. M. GeneSilico protein structure prediction meta-server. Nucleic Acids Res 31, 3305–3307 (2003). PubMed PMC
Webb B. & Sali A. Protein structure modeling with MODELLER. Methods Mol Biol 1137, 1–15 (2014). PubMed
Guex N. & Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997). PubMed
Sayle R. A. & Milner-White E. J. RASMOL: biomolecular graphics for all. Trends in biochemical sciences 20, 374 (1995). PubMed
Muhlhans J., Brandstatter J. H. & Giessl A. The centrosomal protein pericentrin identified at the basal body complex of the connecting cilium in mouse photoreceptors. PLoS One 6, e26496 (2011). PubMed PMC
Schindelin J. et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682 (2012). PubMed PMC