• This record comes from PubMed

Lanthanide(III) complexes are more active inhibitors of the Fenton reaction than pure ligands

. 2016 Mar ; 21 (2) : 84-9. [epub] 20160218

Language English Country England, Great Britain Media print-electronic

Document type Journal Article

OBJECTIVES: This study is an extension to our finding of direct anti-oxidant activities of lanthanide(III) complexes with the heterocyclic compound, 5-aminoorotic acid (AOA). In this experiment, we used AOA and coumarin-3-carboxylic acid as the two heterocyclic compounds with anti-oxidant potential, to produce the complexes with different lanthanides. METHODS: Lanthanide(III) complexes were tested on the iron-driven Fenton reaction. The product of this reaction, the hydroxyl radical, was detected by HPLC. RESULTS: All complexes as well as their ligands had positive or neutral effect on the Fenton reaction but their behavior was different. Both pure ligands in low concentration ratio to iron were inefficient in contrast to some of their complexes. Complexes of neodymium, samarium, gadolinium, and partly of cerium blocked the Fenton reaction at very low ratios (in relation to iron) but the effect disappeared at higher ratios. In contrast, lanthanum complexes appeared to be the most promising. Both blocked the Fenton reaction in a dose-dependent manner. CONCLUSION: Lanthanide(III) complexes were proven to block the iron-driven production of the hydroxyl radical. Second, the lanthanide(III) element appears to be crucial for the anti-oxidant effect. Overall, lanthanum complexes may be promising direct anti-oxidants for future testing.

See more in PubMed

Laughton MJ, Halliwell B, Evans PJ, Hoult JR. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem Pharmacol 1989;38(17):2859–65. doi: 10.1016/0006-2952(89)90442-5 PubMed DOI

Macakova K, Mladenka P, Filipsky T, Riha M, Jahodar L, Trejtnar F, et al. . Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chem 2012;135(4):2584–92. doi: 10.1016/j.foodchem.2012.06.107 PubMed DOI

Prochazkova D, Bousova I, Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011;82(4):513–23. doi: 10.1016/j.fitote.2011.01.018 PubMed DOI

Misra SN, Ramchandriah G, Gagnani MA, Shukla RS, Devi MI. Absorption spectral studies involving 4f–4f transitions as structural probe in chemical and biochemical reactions and compositional dependence of intensity parameters. Appl Spectrosc Rev 2003;38(4):433–93. doi: 10.1081/ASR-120026330 DOI

Wang K, Li RC, Cheng Y, Zhu B. Lanthanides – the future drugs? Coord Chem Rev 1999;192:297–308. doi: 10.1016/S0010-8545(99)00072-7 DOI

Helios K, Duczmal M, Pietraszko A, Michalska D. The first Ni(II) complexes of 5-nitroorotate ligand with the tridentate and bidentate coordination modes. Crystal and molecular structures, vibrational spectra and magnetic properties. Polyhedron 2013;49(1):259–68. doi: 10.1016/j.poly.2012.10.018 DOI

Michalska D, Hernik K, Wysokinski R, Morzyk-Ociepa B, Pietraszko A. Copper(II)–pi interaction in cis-[Cu(orotato)(NH3)2] and the crystal structure of [Cu(orotato)(H2O)4]·H2O: X-ray, vibrational spectroscopy and density functional study. Polyhedron 2007;26(15):4303–13. doi: 10.1016/j.poly.2007.05.052 DOI

Azizian J, Mohammadi AA, Bidar I, Mirzaei P. KAl(SO4)2·12H2O (alum) a reusable catalyst for the synthesis of some 4-substituted coumarins via Pechmann reaction under solvent-free conditions. Monatsh Chem 2008;139(7):805–8. doi: 10.1007/s00706-007-0833-9 DOI

Satyanarayana VSV, Sreevani P, Sivakumar A, Vijayakumar V. Synthesis and antimicrobial activity of new Schiff bases containing coumarin moiety and their spectral characterization. ARKIVOC 2008;2008(17):221–33.

Garazd MM, Muzychka OV, Vovk AI, Nagorichna IV, Ogorodniichuk AS. Modified coumarins. 27. Synthesis and antioxidant activity of 3-substituted 5,7-dihydroxy-4-methylcoumarins. Chem Nat Compd 2007;43(1):19–23. doi: 10.1007/s10600-007-0055-8 DOI

Smitha G, Reddy CS. ZrCl4-catalyzed Pechmann reaction: synthesis of coumarins under solvent-free conditions. Synth Commun 2004;34(21):3997–4003. doi: 10.1081/SCC-200034821 DOI

Kostova I. Coumarins as inhibitors of HIV reverse transcriptase. Current HIV Res 2006;4(3):347–63. doi: 10.2174/157016206777709393 PubMed DOI

Kotali A, Lafazanis IS, Harris PA. Synthesis of 6,7-diacylcoumarins via the transformation of a hydroxy into a carbonyl group. Synth Commun 2008;38(22):3996–4006. doi: 10.1080/00397910802250911 DOI

Kostova I. Synthetic and natural coumarins as cytotoxic agents. Curr Med Chem Anticancer Agents 2005;5(1):29–46. doi: 10.2174/1568011053352550 PubMed DOI

Kostova I, Momekov G. New cerium(III) complexes of coumarins – synthesis, characterization and cytotoxicity evaluation. Eur J Med Chem 2008;43(1):178–88. doi: 10.1016/j.ejmech.2007.03.007 PubMed DOI

Kostova I, Stefanova T. Synthesis, characterization and cytotoxic/cytostatic activity of La(III) and Dy(III) complexes. J Trace Elem Med Biol 2010;24(1):7–13. doi: 10.1016/j.jtemb.2009.06.004 PubMed DOI

Kostova I, Trendafilova N, Momekov G. Theoretical, spectral characterization and antineoplastic activity of new lanthanide complexes. J Trace Elem Med Biol 2008;22(2):100–11. doi: 10.1016/j.jtemb.2007.10.005 PubMed DOI

Nofal ZM, El-Zahar MI, El-Karim SSA. Novel coumarin derivatives with expected biological activity. Molecules 2000;5(2):99–113. doi: 10.3390/50200099 DOI

Sashidhara KV, Kumar A, Kumar M, Srivastava A, Puri A. Synthesis and antihyperlipidemic activity of novel coumarin bisindole derivatives. Bioorg Med Chem Lett 2010;20(22):6504–7. doi: 10.1016/j.bmcl.2010.09.055 PubMed DOI

Mladenka P, Macakova K, Zatloukalova L, Rehakova Z, Singh BK, Prasad AK, et al. . In vitro interactions of coumarins with iron. Biochimie 2010;92(9):1108–14. doi: 10.1016/j.biochi.2010.03.025 PubMed DOI

Balabani A, Hadjipavlou-Litina DJ, Litinas KE, Mainou M, Tsironi CC, Vronteli A. Synthesis and biological evaluation of (2,5-dihydro-1H-pyrrol-1-yl)-2H-chromen-2-ones as free radical scavengers. Eur J Med Chem 2011;46(12):5894–901. doi: 10.1016/j.ejmech.2011.09.053 PubMed DOI

Kostova I, Rastogi VK, Kiefer W, Kostovski A. New lanthanum (III) complex – synthesis, characterization, and cytotoxic activity. Arch Pharm (Weinheim) 2006;339(11):598–607. doi: 10.1002/ardp.200600077 PubMed DOI

Kostova I, Rastogi VK, Kiefer W, Kostovski A. New cerium(III) and neodymium(III) complexes as (III) cytotoxic agents. Appl Organomet Chem 2006;20(8):483–93. doi: 10.1002/aoc.1113 DOI

Kostova I, Peica N, Kiefer W. Theoretical and spectroscopic studies of lanthanum (III) complex of 5-aminoorotic acid. Chem Phys 2006;327(2–3):494–505. doi: 10.1016/j.chemphys.2006.05.029 DOI

Kostova I, Peica N, Kiefer W. Theoretical and spectroscopic studies of 5-aminoorotic acid and its new lanthanide(III) complexes. J Raman Spectrosc 2007;38(2):205–16. doi: 10.1002/jrs.1625 DOI

Kostova I, Traykova M, Rastogi VK. New lanthanide complexes with antioxidant activity. Med Chem 2008;4(4):371–8. doi: 10.2174/157340608784872181 PubMed DOI

Nappi AJ, Vass E. Hydroxyl radical formation via iron-mediated Fenton chemistry is inhibited by methylated catechols. Biochim Biophys Acta 1998;1425(1):159–67. doi: 10.1016/S0304-4165(98)00062-2 PubMed DOI

Kostova I, Momekov G. Synthesis, characterization and cytotoxicity evaluation of new cerium(III), lanthanum(III) and neodymium(III) complexes. Appl Organomet Chem 2007;21(4):226–33. doi: 10.1002/aoc.1205 DOI

Kostova I, Momekov G, Stancheva P. New samarium(III), gadolinium(III), and dysprosium(III) complexes of coumarin-3-carboxylic acid as antiproliferative agents. Met-Based Drugs 2007;2007:15925. doi: 10.1155/2007/15925 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...