CycloBranch: De Novo Sequencing of Nonribosomal Peptides from Accurate Product Ion Mass Spectra
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26195308
DOI
10.1007/s13361-015-1211-1
PII: 10.1007/s13361-015-1211-1
Knihovny.cz E-resources
- Keywords
- Branch-cyclic, Branched, Cyclic, De novo sequencing, Linear, Nonribosomal peptides,
- MeSH
- Algorithms MeSH
- Peptide Fragments MeSH
- Peptides analysis chemistry MeSH
- Sequence Analysis, Protein methods MeSH
- Tandem Mass Spectrometry methods MeSH
- User-Computer Interface MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Peptide Fragments MeSH
- Peptides MeSH
Nonribosomal peptides have a wide range of biological and medical applications. Their identification by tandem mass spectrometry remains a challenging task. A new open-source de novo peptide identification engine CycloBranch was developed and successfully applied in identification or detailed characterization of 11 linear, cyclic, branched, and branch-cyclic peptides. CycloBranch is based on annotated building block databases the size of which is defined by the user according to ribosomal or nonribosomal peptide origin. The current number of involved nonisobaric and isobaric building blocks is 287 and 521, respectively. Contrary to all other peptide sequencing tools utilizing either peptide libraries or peptide fragment libraries, CycloBranch represents a true de novo sequencing engine developed for accurate mass spectrometric data. It is a stand-alone and cross-platform application with a graphical and user-friendly interface; it supports mzML, mzXML, mgf, txt, and baf file formats and can be run in parallel on multiple threads. It can be downloaded for free from http://ms.biomed.cas.cz/cyclobranch/ , where the User's manual and video tutorials can be found.
See more in PubMed
Anal Chem. 2005 Feb 15;77(4):964-73 PubMed
Anal Chem. 1994 Dec 15;66(24):4390-9 PubMed
J Comput Biol. 1999 Fall-Winter;6(3-4):327-42 PubMed
Nat Rev Mol Cell Biol. 2004 Sep;5(9):699-711 PubMed
J Nat Prod. 2014 Aug 22;77(8):1902-9 PubMed
Curr Opin Struct Biol. 2010 Apr;20(2):234-40 PubMed
J Am Chem Soc. 2008 Dec 31;130(52):17774-89 PubMed
J Am Soc Mass Spectrom. 1999 Apr;10 (4):360-3 PubMed
J Bacteriol. 2010 Oct;192(19):5143-50 PubMed
Nat Methods. 2009 Aug;6(8):596-9 PubMed
Nucleic Acids Res. 2008 Jan;36(Database issue):D326-31 PubMed
J Proteome Res. 2011 Oct 7;10(10):4505-12 PubMed
J Integr Bioinform. 2013 Nov 14;10(3):228 PubMed
Rapid Commun Mass Spectrom. 1997;11(9):1067-75 PubMed
Rapid Commun Mass Spectrom. 2003;17(20):2337-42 PubMed
Expert Rev Proteomics. 2011 Oct;8(5):645-57 PubMed
Proc Natl Acad Sci U S A. 2012 Nov 20;109 (47):19196-201 PubMed
J Am Soc Mass Spectrom. 2013 Aug;24(8):1177-84 PubMed
Curr Med Chem. 2015;22(3):352-9 PubMed
PLoS One. 2012;7(9):e44913 PubMed
J Proteome Res. 2014 Feb 7;13(2):1143-6 PubMed
Rapid Commun Mass Spectrom. 2007;21(18):3033-8 PubMed
Anal Bioanal Chem. 2014 Mar;406(7):1933-43 PubMed
Anal Chem. 2009 Jun 1;81(11):4200-9 PubMed
Proteomics. 2011 Sep;11(18):3642-50 PubMed
J Comput Biol. 2011 Nov;18(11):1371-81 PubMed
BMC Bioinformatics. 2008 Mar 26;9:163 PubMed
Exploring the Effects of Cyclosporin A to Isocyclosporin A Rearrangement on Ion Mobility Separation
Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry