• This record comes from PubMed

Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life

Language English Country United States Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Sexual reproduction and clonality in eukaryotes are mostly seen as exclusive, the latter being rather exceptional. This view might be biased by focusing almost exclusively on metazoans. We analyze and discuss reproduction in the context of extant eukaryotic diversity, paying special attention to protists. We present results of phylogenetically extended searches for homologs of two proteins functioning in cell and nuclear fusion, respectively (HAP2 and GEX1), providing indirect evidence for these processes in several eukaryotic lineages where sex has not been observed yet. We argue that (i) the debate on the relative significance of sex and clonality in eukaryotes is confounded by not appropriately distinguishing multicellular and unicellular organisms; (ii) eukaryotic sex is extremely widespread and already present in the last eukaryotic common ancestor; and (iii) the general mode of existence of eukaryotes is best described by clonally propagating cell lines with episodic sex triggered by external or internal clues. However, important questions concern the relative longevity of true clonal species (i.e., species not able to return to sexual procreation anymore). Long-lived clonal species seem strikingly rare. We analyze their properties in the light of meiotic sex development from existing prokaryotic repair mechanisms. Based on these considerations, we speculate that eukaryotic sex likely developed as a cellular survival strategy, possibly in the context of internal reactive oxygen species stress generated by a (proto) mitochondrion. Thus, in the context of the symbiogenic model of eukaryotic origin, sex might directly result from the very evolutionary mode by which eukaryotic cells arose.

See more in PubMed

Lynch M. Evolution of the mutation rate. Trends Genet. 2010;26(8):345–352. PubMed PMC

Adl SM, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59(5):429–493. PubMed PMC

Chepurnov VA, Mann DG, Sabbe K, Vyverman W. Experimental studies on sexual reproduction in diatoms. Int Rev Cytol. 2004;237:91–154. PubMed

Umen JG. Evolution of sex and mating loci: An expanded view from Volvocine algae. Curr Opin Microbiol. 2011;14(6):634–641. PubMed PMC

Cole E, Sugai T. Developmental progression of Tetrahymena through the cell cycle and conjugation. Methods Cell Biol. 2012;109:177–236. PubMed

Dunthorn M, Katz LA. Secretive ciliates and putative asexuality in microbial eukaryotes. Trends Microbiol. 2010;18(5):183–188. PubMed

Lahr DJ, Parfrey LW, Mitchell EA, Katz LA, Lara E. 2011. The chastity of amoebae: Re-evaluating evidence for sex in amoeboid organisms. Proc Biol Sci 278(1715):2081–2090. PubMed PMC

del Campo J, et al. The others: Our biased perspective of eukaryotic genomes. Trends Ecol Evol. 2014;29(5):252–259. PubMed PMC

Schurko AM, Logsdon JM., Jr Using a meiosis detection toolkit to investigate ancient asexual “scandals” and the evolution of sex. BioEssays. 2008;30(6):579–589. PubMed

Peacock L, et al. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc Natl Acad Sci USA. 2011;108(9):3671–3676. PubMed PMC

Peacock L, Bailey M, Carrington M, Gibson W. Meiosis and haploid gametes in the pathogen Trypanosoma brucei. Curr Biol. 2014;24(2):181–186. PubMed PMC

O’Gorman CM, Fuller H, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature. 2009;457(7228):471–474. PubMed

Brakhage AA, Langfelder K. Menacing mold: The molecular biology of Aspergillus fumigatus. Annu Rev Microbiol. 2002;56:433–455. PubMed

Shenoy BD, Jeewon R, Hyde KD. Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Divers. 2007;26(1):1–54.

Houdan A, et al. Holococcolithophore-heterococcolithophore (Haptophyta) life cycles: Flow cytometric analysis of relative ploidy levels. Syst Biodivers. 2004;1(4):453–465.

Frada M, et al. First observations of heterococcolithophore–holococcolithophore life cycle combinations in the family Pontosphaeraceae (Calcihaptophycideae, Haptophyta) Mar Micropaleontol. 2009;71(1-2):20–27.

Evans NM, Holder MT, Barbeitos MS, Okamura B, Cartwright P. The phylogenetic position of Myxozoa: Exploring conflicting signals in phylogenomic and ribosomal data sets. Mol Biol Evol. 2010;27(12):2733–2746. PubMed

Ringuette MJ, Koehler A, Desser SS. Shared antigenicity between the polar filaments of myxosporeans and other Cnidaria. J Parasitol. 2011;97(1):163–166. PubMed

Wolf K, Markiw ME. Biology contravenes taxonomy in the myxozoa: New discoveries show alternation of invertebrate and vertebrate hosts. Science. 1984;225(4669):1449–1452. PubMed

Morris DJ. A new model for myxosporean (Myxozoa) development explains the endogenous budding phenomenon, the nature of cell within cell life stages and evolution of parasitism from a cnidarian ancestor. Int J Parasitol. 2012;42(9):829–840. PubMed

Kim E, Archibald JM. Diversity and evolution of plastids and their genomes. In: Aronsson H, Sandelius AS, editors. The Chloroplast—Interactions with the Environment. Springer; Berlin: 2009. pp. 1–39.

Kugrens P, Lee RE. Ultrastructure of fertilization in a cryptomonad. J Phycol. 1988;24(3):385–393.

Hill DRA, Wetherbee R. Proteomonas sulcata gen. et sp. nov. (Cryptophyceae), a cryptomonad with two morphologically distinct and alternating forms. Phycologia. 1986;25(4):521–543.

Hoef-Emden K, Marin B, Melkonian M. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J Mol Evol. 2002;55(2):161–179. PubMed

Hoef-Emden K, Melkonian M. Revision of the genus Cryptomonas (Cryptophyceae): A combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist. 2003;154(3-4):371–409. PubMed

Guillou L. Characterization of the Parmales: Much more than the resolution of a taxonomic enigma. J Phycol. 2011;47(1):2–4. PubMed

Guillou L, et al. Bolidomonas: A new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta) J Phycol. 1999;35(2):368–381.

Ichinomiya M, et al. Isolation and characterization of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio region, Western North Pacific. J Phycol. 2011;47(1):144–151. PubMed

Kessenich CR, Ruck EC, Schurko AM, Wickett NJ, Alverson AJ. Transcriptomic insights into the life history of Bolidophytes, the sister lineage to diatoms. J Phycol. 2014;50(6):977–983. PubMed

Schurko AM, Neiman M, Logsdon JM., Jr Signs of sex: What we know and how we know it. Trends Ecol Evol. 2009;24(4):208–217. PubMed

Carr M, Leadbeater BS, Hassan R, Nelson M, Baldauf SL. Molecular phylogeny of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci USA. 2008;105(43):16641–16646. PubMed PMC

King N, et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008;451(7180):783–788. PubMed PMC

Carr M, Nelson M, Leadbeater BS, Baldauf SL. Three families of LTR retrotransposons are present in the genome of the choanoflagellate Monosiga brevicollis. Protist. 2008;159(4):579–590. PubMed

Arkhipova I, Meselson M. Deleterious transposable elements and the extinction of asexuals. BioEssays. 2005;27(1):76–85. PubMed

Carr M, Leadbeater BS, Baldauf SL. Conserved meiotic genes point to sex in the choanoflagellates. J Eukaryot Microbiol. 2010;57(1):56–62. PubMed

Levin TC, King N. Evidence for sex and recombination in the choanoflagellate Salpingoeca rosetta. Curr Biol. 2013;23(21):2176–2180. PubMed PMC

Derelle E, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA. 2006;103(31):11647–11652. PubMed PMC

Grimsley N, Péquin B, Bachy C, Moreau H, Piganeau G. Cryptic sex in the smallest eukaryotic marine green alga. Mol Biol Evol. 2010;27(1):47–54. PubMed

Blanc-Mathieu R, Sanchez-Ferandin S, Eyre-Walker A, Piganeau G. Organellar inheritance in the green lineage: Insights from Ostreococcus tauri. Genome Biol Evol. 2013;5(8):1503–1511. PubMed PMC

Andersson JO. Double peaks reveal rare diplomonad sex. Trends Parasitol. 2012;28(2):46–52. PubMed

Cooper MA, Adam RD, Worobey M, Sterling CR. Population genetics provides evidence for recombination in Giardia. Curr Biol. 2007;17(22):1984–1988. PubMed

Ramesh MA, Malik SB, Logsdon JM., Jr A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol. 2005;15(2):185–191. PubMed

Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM., Jr An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS ONE. 2008;3(8):e2879. PubMed PMC

Fritz-Laylin LK, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140(5):631–642. PubMed

Fučíková K, Pažoutová M, Rindi F. Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta) J Phycol. 2015 doi: 10.1111/jpy.12293. PubMed DOI

Cuomo CA, et al. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res. 2012;22(12):2478–2488. PubMed PMC

Corradi N, Lildhar L. Meiotic genes in the arbuscular mycorrhizal fungi: What for? Commun Integr Biol. 2012;5(2):187–189. PubMed PMC

Tisserant E, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA. 2013;110(50):20117–20122. PubMed PMC

Glöckner G, et al. The genome of the foraminiferan Reticulomyxa filosa. Curr Biol. 2014;24(1):11–18. PubMed

Suga H, et al. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun. 2013;4:2325. PubMed PMC

Chi J, Parrow MW, Dunthorn M. Cryptic sex in Symbiodinium (Alveolata, Dinoflagellata) is supported by an inventory of meiotic genes. J Eukaryot Microbiol. 2014;61(3):322–327. PubMed

Weedall GD, Hall N. Sexual reproduction and genetic exchange in parasitic protists. Parasitology. 2015;142(Suppl 1):S120–S127. PubMed PMC

Wong JL, Johnson MA. Is HAP2-GCS1 an ancestral gamete fusogen? Trends Cell Biol. 2010;20(3):134–141. PubMed

Liu Y, Pei J, Grishin N, Snell WJ. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction. Development. 2015;142(5):962–971. PubMed PMC

Ning J, et al. Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates. Genes Dev. 2013;27(10):1198–1215. PubMed PMC

Flot JF, et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature. 2013;500(7463):453–457. PubMed

Pan K, et al. Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica (Eustigmatophyceae) as revealed by its genome sequence. J Phycol. 2011;47(6):1425–1432. PubMed

Radakovits R, et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun. 2012;3:686. PubMed PMC

Corteggiani Carpinelli E, et al. Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Mol Plant. 2014;7(2):323–335. PubMed

Paasche E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia. 2001;40(6):503–529.

Frada M, Probert I, Allen MJ, Wilson WH, de Vargas C. The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proc Natl Acad Sci USA. 2008;105(41):15944–15949. PubMed PMC

von Dassow P, et al. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME J 2014 PubMed PMC

Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukeš J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci USA. 2008;105(6):1999–2004. PubMed PMC

Dean S, Gould MK, Dewar CE, Schnaufer AC. Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proc Natl Acad Sci USA. 2013;110(36):14741–14746. PubMed PMC

Carnes J, et al. Genome and phylogenetic analyses of trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl Trop Dis. 2015;9(1):e3404. PubMed PMC

Judson OP, Normark BB. Ancient asexual scandals. Trends Ecol Evol. 1996;11(2):41–46. PubMed

Normark BB, Judson OP, Moran NA. Genomic signatures of ancient asexual lineages. Biol J Linn Soc Lond. 2003;79(1):69–84.

Doerder FP. Abandoning sex: Multiple origins of asexuality in the ciliate Tetrahymena. BMC Evol Biol. 2014;14:112. PubMed PMC

Muller HJ. The relation of recombination to mutational advance. Mutat Res. 1964;106:2–9. PubMed

van Valen L. A new evolutionary law. Evol Theory. 1973;1(1):1–30.

Hörandl E. A combinational theory for maintenance of sex. Heredity (Edinb) 2009;103(6):445–457. PubMed PMC

Birdsell JA, Wills C. The evolutionary origin and maintenance of sexual recombination: A review of contemporary models. In: Macintyre RJ, Clegg MT, editors. Evolutionary Biology. Vol 33. Springer; New York: 2003. pp. 27–138.

Ben-Ami F, Heller J. Spatial and temporal patterns of parthenogenesis and parasitism in the freshwater snail Melanoides tuberculata. J Evol Biol. 2005;18(1):138–146. PubMed

Campbell N. The advantages of sex. Nat Rev Genet. 2006;7(4):240.

Jokela J, Lively CM, Dybdahl MF, Fox JA. Genetic variation in sexual and clonal lineages of a freshwater snail. Biol J Linn Soc Lond. 2003;79(1):165–181.

Hörandl E. Geographical parthenogenesis: Opportunities for asexuality. In: Schön I, Martens K, Van Dijk P, editors. Lost Sex. Vol 58. Springer, Heidelberg, Germany: 2009. pp. 161–186.

Lewis WM., Jr . The cost of sex. In: Stearns SC, editor. The Evolution of Sex and its Consequences. Birkhäuser; Basel: 1987. pp. 33–57.

Egel R, Penny D. On the origin of meiosis in eukaryotic evolution: coevolution of meiosis and mitosis from feeble beginnings. In: Egel R, Lankenau D-H, editors. Recombination and Meiosis, Genome Dynamics and Stability. Vol 3. Springer Berlin; 2008. pp. 249–288.

Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6(11):836–846. PubMed

Sterkers Y, et al. Novel insights into genome plasticity in Eukaryotes: Mosaic aneuploidy in Leishmania. Mol Microbiol. 2012;86(1):15–23. PubMed

Paris Z, Hashimi H, Lun S, Alfonzo JD, Lukeš J. Futile import of tRNAs and proteins into the mitochondrion of Trypanosoma brucei evansi. Mol Biochem Parasitol. 2011;176(2):116–120. PubMed PMC

Lun ZR, Lai DH, Li FJ, Lukeš J, Ayala FJ. Trypanosoma brucei: Two steps to spread out from Africa. Trends Parasitol. 2010;26(9):424–427. PubMed

Nowacki M, et al. RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature. 2008;451(7175):153–158. PubMed PMC

Nowacki M, Shetty K, Landweber LF. RNA-Mediated epigenetic programming of genome rearrangements. Annu Rev Genomics Hum Genet. 2011;12:367–389. PubMed PMC

Goodenough U, Heitman J. Origins of eukaryotic sexual reproduction. Cold Spring Harb Perspect Biol. 2014;6(3):a016154. PubMed PMC

Gross J, Bhattacharya D. Uniting sex and eukaryote origins in an emerging oxygenic world. Biol Direct. 2010;5:53. PubMed PMC

Naor A, Gophna U. Cell fusion and hybrids in Archaea: Prospects for genome shuffling and accelerated strain development for biotechnology. Bioengineered. 2013;4(3):126–129. PubMed PMC

Nedelcu AM. Sex as a response to oxidative stress: Stress genes co-opted for sex. Proc Biol Sci. 2005;272(1575):1935–1940. PubMed PMC

Nedelcu AM, Michod RE. Sex as a response to oxidative stress: The effect of antioxidants on sexual induction in a facultatively sexual lineage. Proc Biol Sci. 2003;270(Suppl 2):S136–S139. PubMed PMC

Hörandl E, Hadacek F. The oxidative damage initiation hypothesis for meiosis. Plant Reprod. 2013;26(4):351–367. PubMed PMC

Pennisi E. Microbiology. Modern symbionts inside cells mimic organelle evolution. Science. 2014;346(6209):532–533. PubMed

Knoll AH, Javaux EJ, Hewitt D, Cohen P. Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc Lond B Biol Sci. 2006;361(1470):1023–1038. PubMed PMC

Holland HD. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci. 2006;361(1470):903–915. PubMed PMC

Dyall SD, Brown MT, Johnson PJ. Ancient invasions: From endosymbionts to organelles. Science. 2004;304(5668):253–257. PubMed

Schopf JW. Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci. 2006;361(1470):869–885. PubMed PMC

Koonin EV. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 2010;11(5):209. PubMed PMC

Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature. 2013;504(7479):231–236. PubMed

Gray MW. The pre-endosymbiont hypothesis: A new perspective on the origin and evolution of mitochondria. Cold Spring Harb Perspect Biol. 2014;6(3):a016097. PubMed PMC

Szklarczyk R, Huynen MA. Mosaic origin of the mitochondrial proteome. Proteomics. 2010;10(22):4012–4024. PubMed

Martin W, Koonin EV. Introns and the origin of nucleus-cytosol compartmentalization. Nature. 2006;440(7080):41–45. PubMed

Speijer D. Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH₂/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation. BioEssays. 2011;33(2):88–94. PubMed

Speijer D. Reconsidering ideas regarding the evolution of peroxisomes: The case for a mitochondrial connection. Cell Mol Life Sci. 2014;71(13):2377–2378. PubMed PMC

Speijer D. How the mitochondrion was shaped by radical differences in substrates: What carnitine shuttles and uncoupling tell us about mitochondrial evolution in response to ROS. BioEssays. 2014;36(7):634–643. PubMed

Bolte K, Rensing SA, Maier UG. The evolution of eukaryotic cells from the perspective of peroxisomes: Phylogenetic analyses of peroxisomal beta-oxidation enzymes support mitochondria-first models of eukaryotic cell evolution. BioEssays. 2015;37(2):195–203. PubMed

Camões F, et al. New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. Biochim Biophys Acta. 2015;1853(1):111–125. PubMed

Speijer D, Manjeri GR, Szklarczyk R. How to deal with oxygen radicals stemming from mitochondrial fatty acid oxidation. Philos Trans R Soc Lond B Biol Sci. 2014;369(1646):20130446. PubMed PMC

Lane N, Martin W. The energetics of genome complexity. Nature. 2010;467(7318):929–934. PubMed

Hörandl E. Meiosis and the paradox of sex in nature. In: Bernstein C, editor. Meiosis. InTech; Rijeka, Croatia: 2013. pp. 17–39.

Bernstein H, Bernstein C. Evolutionary origin and adaptive function of meiosis. In: Bernstein C, editor. Meiosis. InTech; Rijeka, Croatia: 2013. pp. 41–75.

Lane N. Power, Sex, Suicide. Mitochondria and the Meaning of Life. Oxford Univ Press; Oxford: 2006.

Chouchani ET, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–435. PubMed PMC

Burki F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol. 2014;6(5):a016147. PubMed PMC

Simpson AG, Roger AJ. The real ‘kingdoms’ of eukaryotes. Curr Biol. 2004;14(17):R693–R696. PubMed

Stechmann A, Cavalier-Smith T. The root of the eukaryote tree pinpointed. Curr Biol. 2003;13(17):R665–R666. PubMed

Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature. 2005;436(7054):1113–1118. PubMed

Burki F, et al. Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE. 2007;2(8):e790. PubMed PMC

Burki F, Okamoto N, Pombert JF, Keeling PJ. 2012. The evolutionary history of haptophytes and cryptophytes: Phylogenomic evidence for separate origins. Proc Biol Sci 279(1736):2246–2254. PubMed PMC

Okamoto N, Chantangsi C, Horák A, Leander BS, Keeling PJ. Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov. PLoS ONE. 2009;4(9):e7080. PubMed PMC

Yabuki A, et al. Palpitomonas bilix represents a basal cryptist lineage: Insight into the character evolution in Cryptista. Sci Rep. 2014;4:4641. PubMed PMC

Seenivasan R, Sausen N, Medlin LK, Melkonian M. Picomonas judraskeda gen. et sp. nov.: The first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘picobiliphytes’. PLoS ONE. 2013;8(3):e59565. PubMed PMC

Yabuki A, Chao EE, Ishida K, Cavalier-Smith T. Microheliella maris (Microhelida ord. n.), an ultrastructurally highly distinctive new axopodial protist species and genus, and the unity of phylum Heliozoa. Protist. 2012;163(3):356–388. PubMed

Kim E, et al. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc Natl Acad Sci USA. 2011;108(4):1496–1500. PubMed PMC

Mackiewicz P, Gagat P. Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus? Acta Soc Bot Pol. 2014;83(4):399–407.

Pawlowski J. The new micro-kingdoms of eukaryotes. BMC Biol. 2013;11:40. PubMed PMC

Brown MW, et al. 2013. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci 280(1769):20131755.

Yabuki A, Ishida K, Cavalier-Smith T. Rigifila ramosa n. gen., n. sp., a filose apusozoan with a distinctive pellicle, is related to Micronuclearia. Protist. 2013;164(1):75–88. PubMed

Paps J, Medina-Chacón LA, Marshall W, Suga H, Ruiz-Trillo I. Molecular phylogeny of unikonts: New insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist. 2013;164(1):2–12. PubMed PMC

Zhao S, Shalchian-Tabrizi K, Klaveness D. Sulcozoa revealed as a paraphyletic group in mitochondrial phylogenomics. Mol Phylogenet Evol. 2013;69(3):462–468. PubMed

Cavalier-Smith T, et al. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol Phylogenet Evol. 2014;81:71–85. PubMed

Takishita K, Kakizoe N, Yoshida T, Maruyama T. Molecular evidence that phylogenetically diverged ciliates are active in microbial mats of deep-sea cold-seep sediment. J Eukaryot Microbiol. 2010;57(1):76–86. PubMed

Roger AJ, Simpson AG. Evolution: Revisiting the root of the eukaryote tree. Curr Biol. 2009;19(4):R165–R167. PubMed

Rogozin IB, Basu MK, Csürös M, Koonin EV. Analysis of rare genomic changes does not support the unikont-bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol Evol. 2009;1:99–113. PubMed PMC

Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett. 2010;6(3):342–345. PubMed PMC

Katz LA, Grant JR, Parfrey LW, Burleigh JG. Turning the crown upside down: Gene tree parsimony roots the eukaryotic tree of life. Syst Biol. 2012;61(4):653–660. PubMed PMC

Wideman JG, Gawryluk RM, Gray MW, Dacks JB. The ancient and widespread nature of the ER-mitochondria encounter structure. Mol Biol Evol. 2013;30(9):2044–2049. PubMed

He D, et al. An alternative root for the eukaryote tree of life. Curr Biol. 2014;24(4):465–470. PubMed

Derelle R, Lang BF. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol. 2012;29(4):1277–1289. PubMed

Derelle R, et al. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci USA. 2015;112(7):E693–E699. PubMed PMC

Koumandou VL, et al. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol. 2013;48(4):373–396. PubMed PMC

Yubuki N, Leander BS. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 2013;75(2):230–244. PubMed

See more in PubMed

GENBANK
KR230048, KR230049, KR230050, KR230051

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...