Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26195746
PubMed Central
PMC4517231
DOI
10.1073/pnas.1501725112
PII: 1501725112
Knihovny.cz E-resources
- Keywords
- eukaryotes, evolution, protists, reactive oxygen species, sex,
- MeSH
- Eukaryotic Cells physiology MeSH
- Cell Fusion MeSH
- Genome MeSH
- Meiosis MeSH
- Mitochondria metabolism MeSH
- Molecular Sequence Data MeSH
- Reactive Oxygen Species metabolism MeSH
- Reproduction * MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Reactive Oxygen Species MeSH
Sexual reproduction and clonality in eukaryotes are mostly seen as exclusive, the latter being rather exceptional. This view might be biased by focusing almost exclusively on metazoans. We analyze and discuss reproduction in the context of extant eukaryotic diversity, paying special attention to protists. We present results of phylogenetically extended searches for homologs of two proteins functioning in cell and nuclear fusion, respectively (HAP2 and GEX1), providing indirect evidence for these processes in several eukaryotic lineages where sex has not been observed yet. We argue that (i) the debate on the relative significance of sex and clonality in eukaryotes is confounded by not appropriately distinguishing multicellular and unicellular organisms; (ii) eukaryotic sex is extremely widespread and already present in the last eukaryotic common ancestor; and (iii) the general mode of existence of eukaryotes is best described by clonally propagating cell lines with episodic sex triggered by external or internal clues. However, important questions concern the relative longevity of true clonal species (i.e., species not able to return to sexual procreation anymore). Long-lived clonal species seem strikingly rare. We analyze their properties in the light of meiotic sex development from existing prokaryotic repair mechanisms. Based on these considerations, we speculate that eukaryotic sex likely developed as a cellular survival strategy, possibly in the context of internal reactive oxygen species stress generated by a (proto) mitochondrion. Thus, in the context of the symbiogenic model of eukaryotic origin, sex might directly result from the very evolutionary mode by which eukaryotic cells arose.
See more in PubMed
Lynch M. Evolution of the mutation rate. Trends Genet. 2010;26(8):345–352. PubMed PMC
Adl SM, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59(5):429–493. PubMed PMC
Chepurnov VA, Mann DG, Sabbe K, Vyverman W. Experimental studies on sexual reproduction in diatoms. Int Rev Cytol. 2004;237:91–154. PubMed
Umen JG. Evolution of sex and mating loci: An expanded view from Volvocine algae. Curr Opin Microbiol. 2011;14(6):634–641. PubMed PMC
Cole E, Sugai T. Developmental progression of Tetrahymena through the cell cycle and conjugation. Methods Cell Biol. 2012;109:177–236. PubMed
Dunthorn M, Katz LA. Secretive ciliates and putative asexuality in microbial eukaryotes. Trends Microbiol. 2010;18(5):183–188. PubMed
Lahr DJ, Parfrey LW, Mitchell EA, Katz LA, Lara E. 2011. The chastity of amoebae: Re-evaluating evidence for sex in amoeboid organisms. Proc Biol Sci 278(1715):2081–2090. PubMed PMC
del Campo J, et al. The others: Our biased perspective of eukaryotic genomes. Trends Ecol Evol. 2014;29(5):252–259. PubMed PMC
Schurko AM, Logsdon JM., Jr Using a meiosis detection toolkit to investigate ancient asexual “scandals” and the evolution of sex. BioEssays. 2008;30(6):579–589. PubMed
Peacock L, et al. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc Natl Acad Sci USA. 2011;108(9):3671–3676. PubMed PMC
Peacock L, Bailey M, Carrington M, Gibson W. Meiosis and haploid gametes in the pathogen Trypanosoma brucei. Curr Biol. 2014;24(2):181–186. PubMed PMC
O’Gorman CM, Fuller H, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature. 2009;457(7228):471–474. PubMed
Brakhage AA, Langfelder K. Menacing mold: The molecular biology of Aspergillus fumigatus. Annu Rev Microbiol. 2002;56:433–455. PubMed
Shenoy BD, Jeewon R, Hyde KD. Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Divers. 2007;26(1):1–54.
Houdan A, et al. Holococcolithophore-heterococcolithophore (Haptophyta) life cycles: Flow cytometric analysis of relative ploidy levels. Syst Biodivers. 2004;1(4):453–465.
Frada M, et al. First observations of heterococcolithophore–holococcolithophore life cycle combinations in the family Pontosphaeraceae (Calcihaptophycideae, Haptophyta) Mar Micropaleontol. 2009;71(1-2):20–27.
Evans NM, Holder MT, Barbeitos MS, Okamura B, Cartwright P. The phylogenetic position of Myxozoa: Exploring conflicting signals in phylogenomic and ribosomal data sets. Mol Biol Evol. 2010;27(12):2733–2746. PubMed
Ringuette MJ, Koehler A, Desser SS. Shared antigenicity between the polar filaments of myxosporeans and other Cnidaria. J Parasitol. 2011;97(1):163–166. PubMed
Wolf K, Markiw ME. Biology contravenes taxonomy in the myxozoa: New discoveries show alternation of invertebrate and vertebrate hosts. Science. 1984;225(4669):1449–1452. PubMed
Morris DJ. A new model for myxosporean (Myxozoa) development explains the endogenous budding phenomenon, the nature of cell within cell life stages and evolution of parasitism from a cnidarian ancestor. Int J Parasitol. 2012;42(9):829–840. PubMed
Kim E, Archibald JM. Diversity and evolution of plastids and their genomes. In: Aronsson H, Sandelius AS, editors. The Chloroplast—Interactions with the Environment. Springer; Berlin: 2009. pp. 1–39.
Kugrens P, Lee RE. Ultrastructure of fertilization in a cryptomonad. J Phycol. 1988;24(3):385–393.
Hill DRA, Wetherbee R. Proteomonas sulcata gen. et sp. nov. (Cryptophyceae), a cryptomonad with two morphologically distinct and alternating forms. Phycologia. 1986;25(4):521–543.
Hoef-Emden K, Marin B, Melkonian M. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J Mol Evol. 2002;55(2):161–179. PubMed
Hoef-Emden K, Melkonian M. Revision of the genus Cryptomonas (Cryptophyceae): A combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist. 2003;154(3-4):371–409. PubMed
Guillou L. Characterization of the Parmales: Much more than the resolution of a taxonomic enigma. J Phycol. 2011;47(1):2–4. PubMed
Guillou L, et al. Bolidomonas: A new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta) J Phycol. 1999;35(2):368–381.
Ichinomiya M, et al. Isolation and characterization of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio region, Western North Pacific. J Phycol. 2011;47(1):144–151. PubMed
Kessenich CR, Ruck EC, Schurko AM, Wickett NJ, Alverson AJ. Transcriptomic insights into the life history of Bolidophytes, the sister lineage to diatoms. J Phycol. 2014;50(6):977–983. PubMed
Schurko AM, Neiman M, Logsdon JM., Jr Signs of sex: What we know and how we know it. Trends Ecol Evol. 2009;24(4):208–217. PubMed
Carr M, Leadbeater BS, Hassan R, Nelson M, Baldauf SL. Molecular phylogeny of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci USA. 2008;105(43):16641–16646. PubMed PMC
King N, et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008;451(7180):783–788. PubMed PMC
Carr M, Nelson M, Leadbeater BS, Baldauf SL. Three families of LTR retrotransposons are present in the genome of the choanoflagellate Monosiga brevicollis. Protist. 2008;159(4):579–590. PubMed
Arkhipova I, Meselson M. Deleterious transposable elements and the extinction of asexuals. BioEssays. 2005;27(1):76–85. PubMed
Carr M, Leadbeater BS, Baldauf SL. Conserved meiotic genes point to sex in the choanoflagellates. J Eukaryot Microbiol. 2010;57(1):56–62. PubMed
Levin TC, King N. Evidence for sex and recombination in the choanoflagellate Salpingoeca rosetta. Curr Biol. 2013;23(21):2176–2180. PubMed PMC
Derelle E, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA. 2006;103(31):11647–11652. PubMed PMC
Grimsley N, Péquin B, Bachy C, Moreau H, Piganeau G. Cryptic sex in the smallest eukaryotic marine green alga. Mol Biol Evol. 2010;27(1):47–54. PubMed
Blanc-Mathieu R, Sanchez-Ferandin S, Eyre-Walker A, Piganeau G. Organellar inheritance in the green lineage: Insights from Ostreococcus tauri. Genome Biol Evol. 2013;5(8):1503–1511. PubMed PMC
Andersson JO. Double peaks reveal rare diplomonad sex. Trends Parasitol. 2012;28(2):46–52. PubMed
Cooper MA, Adam RD, Worobey M, Sterling CR. Population genetics provides evidence for recombination in Giardia. Curr Biol. 2007;17(22):1984–1988. PubMed
Ramesh MA, Malik SB, Logsdon JM., Jr A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol. 2005;15(2):185–191. PubMed
Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM., Jr An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS ONE. 2008;3(8):e2879. PubMed PMC
Fritz-Laylin LK, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140(5):631–642. PubMed
Fučíková K, Pažoutová M, Rindi F. Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta) J Phycol. 2015 doi: 10.1111/jpy.12293. PubMed DOI
Cuomo CA, et al. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res. 2012;22(12):2478–2488. PubMed PMC
Corradi N, Lildhar L. Meiotic genes in the arbuscular mycorrhizal fungi: What for? Commun Integr Biol. 2012;5(2):187–189. PubMed PMC
Tisserant E, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA. 2013;110(50):20117–20122. PubMed PMC
Glöckner G, et al. The genome of the foraminiferan Reticulomyxa filosa. Curr Biol. 2014;24(1):11–18. PubMed
Suga H, et al. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun. 2013;4:2325. PubMed PMC
Chi J, Parrow MW, Dunthorn M. Cryptic sex in Symbiodinium (Alveolata, Dinoflagellata) is supported by an inventory of meiotic genes. J Eukaryot Microbiol. 2014;61(3):322–327. PubMed
Weedall GD, Hall N. Sexual reproduction and genetic exchange in parasitic protists. Parasitology. 2015;142(Suppl 1):S120–S127. PubMed PMC
Wong JL, Johnson MA. Is HAP2-GCS1 an ancestral gamete fusogen? Trends Cell Biol. 2010;20(3):134–141. PubMed
Liu Y, Pei J, Grishin N, Snell WJ. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction. Development. 2015;142(5):962–971. PubMed PMC
Ning J, et al. Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates. Genes Dev. 2013;27(10):1198–1215. PubMed PMC
Flot JF, et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature. 2013;500(7463):453–457. PubMed
Pan K, et al. Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica (Eustigmatophyceae) as revealed by its genome sequence. J Phycol. 2011;47(6):1425–1432. PubMed
Radakovits R, et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun. 2012;3:686. PubMed PMC
Corteggiani Carpinelli E, et al. Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Mol Plant. 2014;7(2):323–335. PubMed
Paasche E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia. 2001;40(6):503–529.
Frada M, Probert I, Allen MJ, Wilson WH, de Vargas C. The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proc Natl Acad Sci USA. 2008;105(41):15944–15949. PubMed PMC
von Dassow P, et al. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME J 2014 PubMed PMC
Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukeš J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci USA. 2008;105(6):1999–2004. PubMed PMC
Dean S, Gould MK, Dewar CE, Schnaufer AC. Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proc Natl Acad Sci USA. 2013;110(36):14741–14746. PubMed PMC
Carnes J, et al. Genome and phylogenetic analyses of trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl Trop Dis. 2015;9(1):e3404. PubMed PMC
Judson OP, Normark BB. Ancient asexual scandals. Trends Ecol Evol. 1996;11(2):41–46. PubMed
Normark BB, Judson OP, Moran NA. Genomic signatures of ancient asexual lineages. Biol J Linn Soc Lond. 2003;79(1):69–84.
Doerder FP. Abandoning sex: Multiple origins of asexuality in the ciliate Tetrahymena. BMC Evol Biol. 2014;14:112. PubMed PMC
Muller HJ. The relation of recombination to mutational advance. Mutat Res. 1964;106:2–9. PubMed
van Valen L. A new evolutionary law. Evol Theory. 1973;1(1):1–30.
Hörandl E. A combinational theory for maintenance of sex. Heredity (Edinb) 2009;103(6):445–457. PubMed PMC
Birdsell JA, Wills C. The evolutionary origin and maintenance of sexual recombination: A review of contemporary models. In: Macintyre RJ, Clegg MT, editors. Evolutionary Biology. Vol 33. Springer; New York: 2003. pp. 27–138.
Ben-Ami F, Heller J. Spatial and temporal patterns of parthenogenesis and parasitism in the freshwater snail Melanoides tuberculata. J Evol Biol. 2005;18(1):138–146. PubMed
Campbell N. The advantages of sex. Nat Rev Genet. 2006;7(4):240.
Jokela J, Lively CM, Dybdahl MF, Fox JA. Genetic variation in sexual and clonal lineages of a freshwater snail. Biol J Linn Soc Lond. 2003;79(1):165–181.
Hörandl E. Geographical parthenogenesis: Opportunities for asexuality. In: Schön I, Martens K, Van Dijk P, editors. Lost Sex. Vol 58. Springer, Heidelberg, Germany: 2009. pp. 161–186.
Lewis WM., Jr . The cost of sex. In: Stearns SC, editor. The Evolution of Sex and its Consequences. Birkhäuser; Basel: 1987. pp. 33–57.
Egel R, Penny D. On the origin of meiosis in eukaryotic evolution: coevolution of meiosis and mitosis from feeble beginnings. In: Egel R, Lankenau D-H, editors. Recombination and Meiosis, Genome Dynamics and Stability. Vol 3. Springer Berlin; 2008. pp. 249–288.
Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6(11):836–846. PubMed
Sterkers Y, et al. Novel insights into genome plasticity in Eukaryotes: Mosaic aneuploidy in Leishmania. Mol Microbiol. 2012;86(1):15–23. PubMed
Paris Z, Hashimi H, Lun S, Alfonzo JD, Lukeš J. Futile import of tRNAs and proteins into the mitochondrion of Trypanosoma brucei evansi. Mol Biochem Parasitol. 2011;176(2):116–120. PubMed PMC
Lun ZR, Lai DH, Li FJ, Lukeš J, Ayala FJ. Trypanosoma brucei: Two steps to spread out from Africa. Trends Parasitol. 2010;26(9):424–427. PubMed
Nowacki M, et al. RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature. 2008;451(7175):153–158. PubMed PMC
Nowacki M, Shetty K, Landweber LF. RNA-Mediated epigenetic programming of genome rearrangements. Annu Rev Genomics Hum Genet. 2011;12:367–389. PubMed PMC
Goodenough U, Heitman J. Origins of eukaryotic sexual reproduction. Cold Spring Harb Perspect Biol. 2014;6(3):a016154. PubMed PMC
Gross J, Bhattacharya D. Uniting sex and eukaryote origins in an emerging oxygenic world. Biol Direct. 2010;5:53. PubMed PMC
Naor A, Gophna U. Cell fusion and hybrids in Archaea: Prospects for genome shuffling and accelerated strain development for biotechnology. Bioengineered. 2013;4(3):126–129. PubMed PMC
Nedelcu AM. Sex as a response to oxidative stress: Stress genes co-opted for sex. Proc Biol Sci. 2005;272(1575):1935–1940. PubMed PMC
Nedelcu AM, Michod RE. Sex as a response to oxidative stress: The effect of antioxidants on sexual induction in a facultatively sexual lineage. Proc Biol Sci. 2003;270(Suppl 2):S136–S139. PubMed PMC
Hörandl E, Hadacek F. The oxidative damage initiation hypothesis for meiosis. Plant Reprod. 2013;26(4):351–367. PubMed PMC
Pennisi E. Microbiology. Modern symbionts inside cells mimic organelle evolution. Science. 2014;346(6209):532–533. PubMed
Knoll AH, Javaux EJ, Hewitt D, Cohen P. Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc Lond B Biol Sci. 2006;361(1470):1023–1038. PubMed PMC
Holland HD. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci. 2006;361(1470):903–915. PubMed PMC
Dyall SD, Brown MT, Johnson PJ. Ancient invasions: From endosymbionts to organelles. Science. 2004;304(5668):253–257. PubMed
Schopf JW. Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci. 2006;361(1470):869–885. PubMed PMC
Koonin EV. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 2010;11(5):209. PubMed PMC
Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature. 2013;504(7479):231–236. PubMed
Gray MW. The pre-endosymbiont hypothesis: A new perspective on the origin and evolution of mitochondria. Cold Spring Harb Perspect Biol. 2014;6(3):a016097. PubMed PMC
Szklarczyk R, Huynen MA. Mosaic origin of the mitochondrial proteome. Proteomics. 2010;10(22):4012–4024. PubMed
Martin W, Koonin EV. Introns and the origin of nucleus-cytosol compartmentalization. Nature. 2006;440(7080):41–45. PubMed
Speijer D. Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH₂/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation. BioEssays. 2011;33(2):88–94. PubMed
Speijer D. Reconsidering ideas regarding the evolution of peroxisomes: The case for a mitochondrial connection. Cell Mol Life Sci. 2014;71(13):2377–2378. PubMed PMC
Speijer D. How the mitochondrion was shaped by radical differences in substrates: What carnitine shuttles and uncoupling tell us about mitochondrial evolution in response to ROS. BioEssays. 2014;36(7):634–643. PubMed
Bolte K, Rensing SA, Maier UG. The evolution of eukaryotic cells from the perspective of peroxisomes: Phylogenetic analyses of peroxisomal beta-oxidation enzymes support mitochondria-first models of eukaryotic cell evolution. BioEssays. 2015;37(2):195–203. PubMed
Camões F, et al. New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. Biochim Biophys Acta. 2015;1853(1):111–125. PubMed
Speijer D, Manjeri GR, Szklarczyk R. How to deal with oxygen radicals stemming from mitochondrial fatty acid oxidation. Philos Trans R Soc Lond B Biol Sci. 2014;369(1646):20130446. PubMed PMC
Lane N, Martin W. The energetics of genome complexity. Nature. 2010;467(7318):929–934. PubMed
Hörandl E. Meiosis and the paradox of sex in nature. In: Bernstein C, editor. Meiosis. InTech; Rijeka, Croatia: 2013. pp. 17–39.
Bernstein H, Bernstein C. Evolutionary origin and adaptive function of meiosis. In: Bernstein C, editor. Meiosis. InTech; Rijeka, Croatia: 2013. pp. 41–75.
Lane N. Power, Sex, Suicide. Mitochondria and the Meaning of Life. Oxford Univ Press; Oxford: 2006.
Chouchani ET, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–435. PubMed PMC
Burki F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol. 2014;6(5):a016147. PubMed PMC
Simpson AG, Roger AJ. The real ‘kingdoms’ of eukaryotes. Curr Biol. 2004;14(17):R693–R696. PubMed
Stechmann A, Cavalier-Smith T. The root of the eukaryote tree pinpointed. Curr Biol. 2003;13(17):R665–R666. PubMed
Richards TA, Cavalier-Smith T. Myosin domain evolution and the primary divergence of eukaryotes. Nature. 2005;436(7054):1113–1118. PubMed
Burki F, et al. Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE. 2007;2(8):e790. PubMed PMC
Burki F, Okamoto N, Pombert JF, Keeling PJ. 2012. The evolutionary history of haptophytes and cryptophytes: Phylogenomic evidence for separate origins. Proc Biol Sci 279(1736):2246–2254. PubMed PMC
Okamoto N, Chantangsi C, Horák A, Leander BS, Keeling PJ. Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov. PLoS ONE. 2009;4(9):e7080. PubMed PMC
Yabuki A, et al. Palpitomonas bilix represents a basal cryptist lineage: Insight into the character evolution in Cryptista. Sci Rep. 2014;4:4641. PubMed PMC
Seenivasan R, Sausen N, Medlin LK, Melkonian M. Picomonas judraskeda gen. et sp. nov.: The first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘picobiliphytes’. PLoS ONE. 2013;8(3):e59565. PubMed PMC
Yabuki A, Chao EE, Ishida K, Cavalier-Smith T. Microheliella maris (Microhelida ord. n.), an ultrastructurally highly distinctive new axopodial protist species and genus, and the unity of phylum Heliozoa. Protist. 2012;163(3):356–388. PubMed
Kim E, et al. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc Natl Acad Sci USA. 2011;108(4):1496–1500. PubMed PMC
Mackiewicz P, Gagat P. Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus? Acta Soc Bot Pol. 2014;83(4):399–407.
Pawlowski J. The new micro-kingdoms of eukaryotes. BMC Biol. 2013;11:40. PubMed PMC
Brown MW, et al. 2013. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci 280(1769):20131755.
Yabuki A, Ishida K, Cavalier-Smith T. Rigifila ramosa n. gen., n. sp., a filose apusozoan with a distinctive pellicle, is related to Micronuclearia. Protist. 2013;164(1):75–88. PubMed
Paps J, Medina-Chacón LA, Marshall W, Suga H, Ruiz-Trillo I. Molecular phylogeny of unikonts: New insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist. 2013;164(1):2–12. PubMed PMC
Zhao S, Shalchian-Tabrizi K, Klaveness D. Sulcozoa revealed as a paraphyletic group in mitochondrial phylogenomics. Mol Phylogenet Evol. 2013;69(3):462–468. PubMed
Cavalier-Smith T, et al. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol Phylogenet Evol. 2014;81:71–85. PubMed
Takishita K, Kakizoe N, Yoshida T, Maruyama T. Molecular evidence that phylogenetically diverged ciliates are active in microbial mats of deep-sea cold-seep sediment. J Eukaryot Microbiol. 2010;57(1):76–86. PubMed
Roger AJ, Simpson AG. Evolution: Revisiting the root of the eukaryote tree. Curr Biol. 2009;19(4):R165–R167. PubMed
Rogozin IB, Basu MK, Csürös M, Koonin EV. Analysis of rare genomic changes does not support the unikont-bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol Evol. 2009;1:99–113. PubMed PMC
Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett. 2010;6(3):342–345. PubMed PMC
Katz LA, Grant JR, Parfrey LW, Burleigh JG. Turning the crown upside down: Gene tree parsimony roots the eukaryotic tree of life. Syst Biol. 2012;61(4):653–660. PubMed PMC
Wideman JG, Gawryluk RM, Gray MW, Dacks JB. The ancient and widespread nature of the ER-mitochondria encounter structure. Mol Biol Evol. 2013;30(9):2044–2049. PubMed
He D, et al. An alternative root for the eukaryote tree of life. Curr Biol. 2014;24(4):465–470. PubMed
Derelle R, Lang BF. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol. 2012;29(4):1277–1289. PubMed
Derelle R, et al. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci USA. 2015;112(7):E693–E699. PubMed PMC
Koumandou VL, et al. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol. 2013;48(4):373–396. PubMed PMC
Yubuki N, Leander BS. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 2013;75(2):230–244. PubMed
Reproduction dynamics of planktonic microbial eukaryotes in the open ocean
GENBANK
KR230048, KR230049, KR230050, KR230051