Role of the parahippocampal cortex in memory for the configuration but not the identity of objects: converging evidence from patients with selective thermal lesions and fMRI
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26283949
PubMed Central
PMC4522562
DOI
10.3389/fnhum.2015.00431
Knihovny.cz E-zdroje
- Klíčová slova
- hippocampus, human, location, parahippocampal gyrus, spatial,
- Publikační typ
- časopisecké články MeSH
The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus.
Department of Experimental Psychology Helmholtz Institute Utrecht University Utrecht Netherlands
Department of Neurology Hospital Na Homolce Prague Czech Republic
Department of Psychology University of Arizona Tucson AZ USA
McConnell Brain Imaging Centre Montreal Neurological Institute McGill University Montreal QC Canada
Zobrazit více v PubMed
Aguirre G. K., Detre J. A., Alsop D. C., D’esposito M. (1996). The parahippocampus subserves topographical learning in man. Cereb. Cortex 6, 823–829. PubMed
Aguirre G. K., D’Esposito M. (1999). Topographical disorientation: a synthesis and taxonomy. Brain 122, 1613–1628. 10.1093/brain/122.9.1613 PubMed DOI
Allen J. J. B., Dikman Z. V., Nadel L. (1994). Scalp distribution of P3 in hippocampus- dependent and hippocampus-independent visual tasks: support for multiple P3 generators. Psychophysiology 31:S22.
Aminoff E., Gronau N., Bar M. (2007). The parahippocampal cortex mediates spatial and nonspatial associations. Cereb. Cortex 17, 1493–1503. 10.1093/cercor/bhl078 PubMed DOI
Auger S. D., Maguire E. A. (2013). Assessing the mechanism of response in the retrosplenial cortex of good and poor navigators. Cortex 49, 2904–2913. 10.1016/j.cortex.2013.08.002 PubMed DOI PMC
Auger S. D., Mullally S. L., Maguire E. A. (2012). Retrosplenial cortex codes for permanent landmarks. PLoS One 7:e43620. 10.1371/journal.pone.0043620 PubMed DOI PMC
Bar M., Aminoff E., Schacter D. L. (2008). Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se. J. Neurosci. 28, 8539–8544. 10.1523/JNEUROSCI.0987-08.2008 PubMed DOI PMC
Berryhill M. E., Phuong L., Picasso L., Cabeza R., Olson I. R. (2007). Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. J. Neurosci. 27, 14415–14423. 10.1523/jneurosci.4163-07.2007 PubMed DOI PMC
Blatt G. J., Pandya D. N., Rosene D. L. (2003). Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: an anatomical and neurophysiological study. J. Comp. Neurol. 466, 161–179. 10.1002/cne.10866 PubMed DOI
Bohbot V. D., Allen J. J., Nadel L. (2000). Memory deficits characterized by patterns of lesions to the hippocampus and parahippocampal cortex. Ann. N. Y. Acad. Sci. 911, 355–368. 10.1111/j.1749-6632.2000.tb06737.x PubMed DOI
Bohbot V. D., Iaria G., Petrides M. (2004). Hippocampal function and spatial memory: evidence from functional neuroimaging in healthy participants and performance of patients with medial temporal lobe resections. Neuropsychology 18, 418–425. 10.1037/0894-4105.18.3.418 PubMed DOI
Bohbot V. D., Jech R., Ruzicka E., Nadel L., Kalina M., Stepánková K., et al. . (2002). Rat spatial memory tasks adapted for humans: characterization in subjects with intact brain and subjects with selective medial temporal lobe thermal lesions. Physiol. Res. 51, S49–S65. PubMed
Bohbot V. D., Kalina M., Stepankova K., Spackova N., Petrides M., Nadel L. (1998). Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex. Neuropsychologia 36, 1217–1238. 10.1016/s0028-3932(97)00161-9 PubMed DOI
Brewer J. B., Zhao Z., Desmond J. E., Glover G. H., Gabrieli J. D. (1998). Making memories: brain activity that predicts how well visual experience will be remembered. Science 281, 1185–1187. 10.1126/science.281.5380.1185 PubMed DOI
Broadbent N. J., Squire L. R., Clark R. E. (2004). Spatial memory, recognition memory and the hippocampus. Proc. Natl. Acad. Sci. U S A 101, 14515–14520. 10.1073/pnas.0406344101 PubMed DOI PMC
Brozinsky C. J., Yonelinas A. P., Kroll N. E., Ranganath C. (2005). Lag-sensitive repetition suppression effects in the anterior parahippocampal gyrus. Hippocampus 15, 557–561. 10.1002/hipo.20087 PubMed DOI
Cabeza R., Ciaramelli E., Olson I. R., Moscovitch M. (2008). The parietal cortex and episodic memory: an attentional account. Nat. Rev. Neurosci. 9, 613–625. 10.1038/nrn2459 PubMed DOI PMC
Ciaramelli E., Rosenbaum R. S., Solcz S., Levine B., Moscovitch M. (2010). Mental space travel: damage to posterior parietal cortex prevents egocentric navigation and reexperiencing of remote spatial memories. J. Exp. Psychol. Learn. Mem. Cogn. 36, 619–634. 10.1037/a0019181 PubMed DOI
Collins D. L., Neelin P., Peters T. M., Evans A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized talairach space. J. Comput. Assist. Tomogr. 18, 192–205. 10.1097/00004728-199403000-00005 PubMed DOI
Corkin S. (1984). Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Semin. Neurol. 4, 249–259. 10.1055/s-2008-1041556 DOI
Duzel E., Habib R., Rotte M., Guderian S., Tulving E., Heinze H. J. (2003). Human hippocampal and parahippocampal activity during visual associative recognition memory for spatial and nonspatial stimulus configurations. J. Neurosci. 23, 9439–9444. PubMed PMC
Eichenbaum H. (2001). The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav. Brain Res. 127, 199–207. 10.1016/s0166-4328(01)00365-5 PubMed DOI
Epstein R., Deyoe E. A., Press D. Z., Rosen A. C., Kanwisher N. (2001). Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex. Cogn. Neuropsychol. 18, 481–508. 10.1080/02643290125929 PubMed DOI
Epstein R. A., Higgins J. S. (2007). Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb. Cortex 17, 1680–1693. 10.1093/cercor/bhl079 PubMed DOI
Epstein R. A., Higgins J. S., Thompson-Schill S. L. (2005). Learning places from views: variation in scene processing as a function of experience and navigational ability. J. Cogn. Neurosci. 17, 73–83. 10.1162/0898929052879987 PubMed DOI
Epstein R. A., Higgins J. S., Jablonski K., Feiler A. M. (2007). Visual scene processing in familiar and unfamiliar environments. J. Neurophysiol. 97, 3670–3683. 10.1152/jn.00003.2007 PubMed DOI
Epstein R., Kanwisher N. (1998). A cortical representation of the local visual environment. Nature 392, 598–601. 10.1038/33402 PubMed DOI
Epstein R. A., Parker W. E., Feiler A. M. (2007). Where am i now? distinct roles for parahippocampal and retrosplenial cortices in place recognition. J. Neurosci. 27, 6141–6149. 10.1523/jneurosci.0799-07.2007 PubMed DOI PMC
Epstein R. A., Parker W. E., Feiler A. M. (2008). Two kinds of FMRI repetition suppression? evidence for dissociable neural mechanisms. J. Neurophysiol. 99, 2877–2886. 10.1152/jn.90376.2008 PubMed DOI
Epstein R. A., Vass L. K. (2014). Neural systems for landmark-based wayfinding in humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20120533. 10.1098/rstb.2012.0533 PubMed DOI PMC
Gaffan D. (1992). Amnesia for complex naturalistic scenes and for objects following fornix transection in the rhesus monkey. Eur. J. Neurosci. 4, 381–388. 10.1111/j.1460-9568.1992.tb00886.x PubMed DOI
Goh J. O., Siong S. C., Park D., Gutchess A., Hebrank A., Chee M. W. (2004). Cortical areas involved in object, background and object-background processing revealed with functional magnetic resonance adaptation. J. Neurosci. 24, 10223–10228. 10.1523/jneurosci.3373-04.2004 PubMed DOI PMC
Habib M., Sirigu A. (1987). Pure topographical disorientation: a definition and anatomical basis. Cortex 23, 73–85. 10.1016/s0010-9452(87)80020-5 PubMed DOI
Hartley T., Maguire E. A., Spiers H. J., Burgess N. (2003). The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37, 877–888. 10.1016/S0896-6273(03)00095-3 PubMed DOI
Hayes S. M., Ryan L., Schnyer D. M., Nadel L. (2004). An fMRI study of episodic memory: retrieval of object, spatial and temporal information. Behav. Neurosci. 118, 885–896. 10.1037/0735-7044.118.5.885 PubMed DOI PMC
Howard L. R., Kumaran D., Ólafsdottir H. F., Spiers H. J. (2011). Double dissociation between hippocampal and parahippocampal responses to object-background context and scene novelty. J. Neurosci. 31, 5253–5261. 10.1523/JNEUROSCI.6055-10.2011 PubMed DOI PMC
Howard L. R., Kumaran D., Ólafsdottir H. F., Spiers H. J. (2013). Dissociation between dorsal and ventral posterior parietal cortical responses to incidental changes in natural scenes. PLoS One 8:e67988. 10.1371/journal.pone.0067988 PubMed DOI PMC
Hublet C., Demeurisse G. (1992). Pure topographical disorientation due to a deep-seated lesion with cortical remote effects. Cortex 28, 123–128. 10.1016/s0010-9452(13)80170-0 PubMed DOI
Iaria G., Petrides M., Dagher A., Pike B., Bohbot V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J. Neurosci. 23, 5945–5952. PubMed PMC
Janzen G., van Turennout M. (2004). Selective neural representation of objects relevant for navigation. Nat. Neurosci. 7, 673–677. 10.1038/nn1257 PubMed DOI
Köhler S., Danckert S., Gati J. S., Menon R. S. (2005). Novelty responses to relational and non-relational information in the hippocampus and the parahippocampal region: a comparison based on event-related fMRI. Hippocampus 15, 763–774. 10.1002/hipo.20098 PubMed DOI
Konishi K., Etchamendy N., Roy S., Marighetto A., Rajah N., Bohbot V. D. (2013). Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus 23, 1005–1014. 10.1002/hipo.22181 PubMed DOI
Landis T., Cummings J. L., Benson D. F., Palmer E. P. (1986). Loss of topographic familiarity. An environmental agnosia. Arch. Neurol. 43, 132–136. 10.1001/archneur.1986.00520020026011 PubMed DOI
Maguire E. A., Burke T., Phillips J., Staunton H. (1996). Topographical disorientation following unilateral temporal lobe lesions in humans. Neuropsychologia 34, 993–1001. 10.1016/0028-3932(96)00022-x PubMed DOI
Malkova L., Bachevalier J., Mishkin M., Saunders R. C. (2001). Neurotoxic lesions of perirhinal cortex impair visual recognition memory in rhesus monkeys. Neuroreport 12, 1913–1917. 10.1097/00001756-200107030-00029 PubMed DOI
Malkova L., Mishkin M. (2003). One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey. J. Neurosci. 23, 1956–1965. PubMed PMC
Meunier M., Bachevalier J., Mishkin M., Murray E. A. (1993). Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J. Neurosci. 13, 5418–5432. PubMed PMC
Milner B. (1972). Disorders of learning and memory after temporal lobe lesions in man. Clin. Neurosurg. 19, 421–446. PubMed
Morgan L. K., Macevoy S. P., Aguirre G. K., Epstein R. A. (2011). Distances between real-world locations are represented in the human hippocampus. J. Neurosci. 31, 1238–1245. 10.1523/JNEUROSCI.4667-10.2011 PubMed DOI PMC
Murray E. A., Mishkin M. (1998). Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J. Neurosci. 18, 6568–6582. PubMed PMC
O’Keefe J., Nadel L. (1978). Biochemistry Oxford: Clarendon.
Packard M. G., Hirsh R., White N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. J. Neurosci. 9, 1465–1472. PubMed PMC
Parkinson J. K., Murray E. A., Mishkin M. (1988). A selective mnemonic role for the hippocampus in monkeys: memory for the location of objects. J. Neurosci. 8, 4159–4167. PubMed PMC
Petrides M. (1985). Deficits in associative-learning tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 23, 601–614. 10.1016/0028-3932(85)90062-4 PubMed DOI
Pihlajamäki M., Tanila H., Könönen M., Hänninen T., Hämäläinen A., Soininen H., et al. . (2004). Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur. J. Neurosci. 19, 1939–1949. 10.1111/j.1460-9568.2004.03282.x PubMed DOI
Ploner C. J., Gaymard B. M., Rivaud-Péchoux S., Baulac M., Clémenceau S., Samson S., et al. . (2000). Lesions affecting the parahippocampal cortex yield spatial memory deficits in humans. Cereb. Cortex 10, 1211–1216. 10.1093/cercor/10.12.1211 PubMed DOI
Rockland K. S., Van Hoesen G. W. (1994). Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb. Cortex 4, 300–313. 10.1093/cercor/4.3.300 PubMed DOI
Rosenbaum R. S., Gilboa A., Levine B., Winocur G., Moscovitch M. (2009). Amnesia as an impairment of detail generation and binding: Evidence from personal, fictional and semantic narratives in K.C.. Neuropsychologia 47, 2181–2187. 10.1016/j.neuropsychologia.2008.11.028 PubMed DOI
Rosenbaum R. S., Ziegler M., Winocur G., Grady C. L., Moscovitch M. (2004). “I have often walked down this street before”: fMRI studies on the hippocampus and other structures during mental navigation of an old environment. Hippocampus 14, 826–835. 10.1002/hipo.10218 PubMed DOI
Scoville W. B., Milner B. (1957). Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatr. 20, 11–21. 10.1136/jnnp.20.1.11 PubMed DOI PMC
Smith M. L., Milner B. (1989). Right hippocampal impairment in the recall of spatial location: encoding deficit or rapid forgetting?. Neuropsychology 27, 71–81. 10.1016/0028-3932(89)90091-2 PubMed DOI
Stepankova K., Fenton A. A., Pastalkova E., Kalina M., Bohbot V. D. (2004). Object-location memory impairment in patients with thermal lesions to the right or left hippocampus. Neuropsychologia 42, 1017–1028. 10.1016/j.neuropsychologia.2004.01.002 PubMed DOI
Squire L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys and humans. Psychol. Rev. 99, 195–231. 10.1037/0033-295x.99.2.195 PubMed DOI
Stern C. E., Corkin S., Gonzalez R. G., Guimaraes A. R., Baker J. R., Jennings P. J., et al. . (1996). The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc. Natl. Acad. Sci. U S A 93, 8660–8665. 10.1073/pnas.93.16.8660 PubMed DOI PMC
Suzuki W. A., Amaral D. G. (1994). Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J. Neurosci. 14, 1856–1877. PubMed PMC
Talairach J., Tournoux P. (1988). Co-planar stereotaxic atlas of the human brain New York: Thieme.
Tulving E., Markowitsch H. J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus 8, 198–204. 10.1002/(sici)1098-1063(1998)8:3<198::aid-hipo2>3.3.co;2-j PubMed DOI
Van Hoesen G. W. (1982). The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci. 5, 345–350. 10.1016/0166-2236(82)90201-6 DOI
Vargha-Khadem F., Gadian D. G., Watkins K. E., Connelly A., Van Paesschen W., Mishkin M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380. 10.1126/science.277.5324.376 PubMed DOI
Watson P. D., Voss J. L., Warren D. E., Tranel D., Cohen N. J. (2013). Spatial reconstruction by patients with hippocampal damage is dominated by relational memory errors. Hippocampus 23, 570–580. 10.1002/hipo.22115 PubMed DOI PMC
Weniger G., Siemerkus J., Schmidt-Samoa C., Mehlitz M., Baudewig J., Dechent P., et al. . (2010). The human parahippocampal cortex subserves egocentric spatial learning during navigation in a virtual maze. Neurobiol. Learn. Mem. 93, 46–55. 10.1016/j.nlm.2009.08.003 PubMed DOI
White N. M., McDonald R. J. (2002). Multiple parallel memory systems in the brain of the rat. Neurobiol. Learn. Mem. 77, 125–184. 10.1006/nlme.2001.4008 PubMed DOI
Worsley K. J., Liao C. H., Aston J., Petre V., Duncan G. H., Morales F., et al. . (2002). A general statistical analysis for fMRI data. Neuroimage 15, 1–15. 10.1006/nimg.2001.0933 PubMed DOI