In-depth proteomic analysis of Varroa destructor: Detection of DWV-complex, ABPV, VdMLV and honeybee proteins in the mite
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26358842
PubMed Central
PMC4566121
DOI
10.1038/srep13907
PII: srep13907
Knihovny.cz E-resources
- MeSH
- Chromatography, Liquid MeSH
- Databases, Genetic MeSH
- Host-Pathogen Interactions * MeSH
- Proteome * MeSH
- Proteomics * methods MeSH
- Tandem Mass Spectrometry MeSH
- Varroidae virology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Proteome * MeSH
We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed.
Bee Research Institute at Dol Libcice nad Vltavou Czechia
CNR ISPA Agrofood Dept 1 73100 Lecce Italy
Crop Research Institute Prague 6 Czechia
Institute of Organic Chemistry and Biochemistry Prague 6 Czechia
Laboratory of Mass Spectrometry Charles University Prague Faculty of Science Prague 2 Czechia
See more in PubMed
Ho Y. P. & Reddy P. M. Identification of pathogens by mass spectrometry. Clin. Chem. 56, 525–536 (2010). PubMed PMC
Calderaro A. et al.. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci. Rep. 4, 6803; 10.1038/srep06803 (2014). PubMed DOI PMC
Cornman S. R. et al.. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics 11, 602; 10.1186/1471-2164-11-602 (2010). PubMed DOI PMC
Le Conte Y., Ellis M. & Ritter W. Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41, 353–363 (2010).
Rosenkranz P., Aumeier P. & Ziegelmann B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119 (2010). PubMed
Dainat B., Evans J. D., Chen Y. P., Gauthier L. & Neumann P. Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Appl. Environ. Microbiol. 78, 981–987 (2012). PubMed PMC
Dainat B., Evans J. D., Chen Y. P., Gauthier L. & Neumann P. Predictive markers of honey bee colony collapse. PLoS ONE 7, e32151; 10.1371/journal.pone.0032151 (2012). PubMed DOI PMC
Dietemann V. et al.. Varroa destructor: research avenues towards sustainable control. J. Apic. Res. 51, 125–132 (2012).
Anderson D. L. & Trueman J. W. H. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24, 165–189 (2000). PubMed
Bowen-Walker P. L. & Gunn A. The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomol. Exp. Appl. 101, 207–217 (2001).
Amdam G. V., Hartfelder K., Norberg K., Hagen A. & Omholt S. W. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J. Econ. Entomol. 97, 741–747 (2004). PubMed
Yang X. L. & Cox-Foster D. L. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. Sci. USA 102, 7470–7475 (2005). PubMed PMC
Erban T., Petrova D., Harant K., Jedelsky P. L. & Titera D. Two-dimensional gel proteome analysis of honeybee, Apis mellifera, worker red-eye pupa hemolymph. Apidologie 45, 53–72 (2014).
vanEngelsdorp D. et al.. Colony Collapse Disorder: a descriptive study. PLoS ONE 4, e6481; 10.1371/journal.pone.0006481 (2009). PubMed DOI PMC
Woltedji D. et al.. Proteome analysis of hemolymph changes during the larval to pupal development stages of honeybee workers (Apis mellifera ligustica). J. Proteome Res. 12, 5189–5198 (2013). PubMed
Bogaerts A., Baggerman G., Vierstraete E., Schoofs L. & Verleyen P. The hemolymph proteome of the honeybee: gel-based or gel-free? Proteomics 9, 3201–3208 (2009). PubMed
Erban T., Jedelsky P. L. & Titera D. Two-dimensional proteomic analysis of honeybee, Apis mellifera, winter worker hemolymph. Apidologie. 44, 404–418 (2013).
Chan Q. W. T., Howes C. G. & Foster L. J. Quantitative comparison of caste differences in honeybee hemolymph. Mol. Cell. Proteomics 5, 2252–2262 (2006). PubMed
Bromenshenk J. J. et al.. Iridovirus and microsporidian linked to honey bee colony decline. PLoS ONE 5, e13181; 10.1371/journal.pone.0013181 (2010). PubMed DOI PMC
Foster L. J. Interpretation of data underlying the link between Colony Collapse Disorder (CCD) and an invertebrate iridescent virus. Mol. Cell. Proteomics 10, M110.006387; 10.1074/mcp.M110.006387 (2011). PubMed DOI PMC
Tokarz R., Firth C., Street C., Cox-Foster D. L. & Lipkin W. I. Lack of evidence for an association between Iridovirus and Colony Collapse Disorder. PLoS ONE 6, e21844; 10.1371/journal.pone.0021844 (2011). PubMed DOI PMC
Tian R. J. et al.. Biological fingerprinting analysis of the interactome of a kinase inhibitor in human plasma by a chemiproteomic approach. J. Chromatogr. A 1134, 134–142 (2006). PubMed
Erban T. Purification of tropomyosin, paramyosin, actin, tubulin, troponin and kinases for chemiproteomics and its application to different scientific fields. PLoS ONE 6, e22860; 10.1371/journal.pone.0022860 (2011). PubMed DOI PMC
Permyakov E. & Kretsinger R. H. Calcium binding proteins. (John Wiley & Sons, 2011).
Bretana N. A. et al.. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses. PLoS ONE 7, e40694; 10.1371/journal.pone.0040694 (2012). PubMed DOI PMC
Lanzi G. et al.. Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L). J. Virol. 80, 4998–5009 (2006). PubMed PMC
Wang H. et al.. Sequence recombination and conservation of Varroa destructor virus-1 and deformed wing virus in field collected honey bees (Apis mellifera). PLoS ONE 8, e74508; 10.1371/journal.pone.0074508 (2013). PubMed DOI PMC
Govan V. A., Leat N., Allsopp M. & Davison S. Analysis of the complete genome sequence of acute bee paralysis virus shows that it belongs to the novel group of insect-infecting RNA viruses. Virology 277, 457–463 (2000). PubMed
de Miranda J. R. et al.. Complete nucleotide sequence of Kashmir bee virus and comparison with acute bee paralysis virus. J. Gen. Virol. 85, 2263–2270 (2004). PubMed
McMenamin A. J. & Genersch E. Honey bee colony losses and associated viruses. Curr. Opin. Insect. Sci. 8, 121–129 (2015). PubMed
Kevan P. G., Hannan M. A., Ostiguy N. & Guzman-Novoa E. A summary of the Varroa-virus disease complex in honey bees. Am. Bee J. 146, 694–697 (2006).
de Miranda J. R., Gauthier L., Ribiere M. & Chen Y. P. Honey bee viruses and their effect on bee and colony health. In: eds. Sammataro D. & Yoder J. A. Honey bee colony health: challenges and sustainable solutions. (CRC Press, 2012). p. 71–102.
Ravoet J. et al.. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS ONE 8, e72443; 10.1371/journal.pone.0072443 (2013). PubMed DOI PMC
Ravoet J. et al.. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58 (2014). PubMed
Katsuma S. et al.. Novel Macula-like virus identified in Bombyx mori cultured cells. J. Virol. 79, 5577–5584 (2005). PubMed PMC
Iwanaga M. et al.. Infection study of Bombyx mori macula-like virus (BmMLV) using a BmMLV-negative cell line and an infectious cDNA clone. J. Virol. Methods 179, 316–324 (2012). PubMed
Fujiyuki T. et al.. Novel insect picorna-like virus identified in the brains of aggressive worker honeybees. J. Virol. 78, 1093–1100 (2004). PubMed PMC
Ongus J. R. et al.. Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J. Gen. Virol. 85, 3747–3755 (2004). PubMed
de Miranda J. R. & Genersch E. Deformed wing virus. J. Invertebr. Pathol. 103, S48–S61 (2010). PubMed
Ryabov E. V. et al.. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathogens 10, e1004230; 10.1371/journal.ppat.1004230 (2014). PubMed DOI PMC
Martin S., Hogarth A., van Breda J. & Perrett J. A scientific note on Varroa jacobsoni Oudemans and the collapse of Apis mellifera L. colonies in the United Kingdom. Apidologie 29, 369–370 (1998).
Zhang Q. S. et al.. Detection and localisation of picorna-like virus particles in tissues of Varroa destructor, an ectoparasite of the honey bee, Apis mellifera. J. Invertebr. Pathol. 96, 97–105 (2007). PubMed
Yue C. & Genersch E. RT-PCR analysis of deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J. Gen. Virol. 86, 3419–3424 (2005). PubMed
Tentcheva D. et al.. Polymerase Chain Reaction detection of deformed wing virus (DWV) in Apis mellifera and Varroa destructor. Apidologie 35, 431–439 (2004).
Tentcheva D. et al.. Comparative analysis of deformed wing virus (DWV) RNA in Apis mellifera and Varroa destructor. Apidologie 37, 41–50 (2006).
Gisder S., Aumeier P. & Genersch E. Deformed wing virus: replication and viral load in mites (Varroa destructor). J. Gen. Virol. 90, 463–467 (2009). PubMed
Moore J. et al.. Recombinants between deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. J. Gen. Virol. 92, 156–161 (2011). PubMed
Bakonyi T., Farkas R., Szendroi A., Dobos-Kovacs M. & Rusvai M. Detection of acute bee paralysis virus by RT-PCR in honey bee and Varroa destructor field samples: rapid screening of representative Hungarian apiaries. Apidologie 33, 63–74 (2002).
Di Prisco G. et al.. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J. Gen. Virol. 92, 151–155 (2011). PubMed
Chen Y. P., Pettis J. S., Evans J. D., Kramer M. & Feldlaufer M. F. Transmission of Kashmir bee virus by the ectoparasitic mite Varroa destructor. Apidologie 35, 441–448 (2004).
Shen M., Yang X., Cox-Foster D. & Cui L. The role of Varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342, 141–149 (2005). PubMed
Tentcheva D. et al.. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl. Environ. Microbiol. 70, 7185–7191 (2004). PubMed PMC
Camazine S. & Liu T. P. A putative iridovirus from the honey bee mite, Varroa jacobsoni Oudemans. J. Invertebr. Pathol. 71, 177–178 (1998). PubMed
Kleespies R. G., Radtke J. & Bienefeld K. Virus-like particles found in the ectoparasitic bee mite Varroa jacobsoni Oudemans. J. Invertebr. Pathol. 75, 87–90 (2000). PubMed
Voet D. & Voet J. G. Biochemistry. 3rd edition. (John Wiley & Sons, 2004). PubMed
Santillan-Galicia M. T., Carzaniga R., Ball B. V. & Alderson P. G. Immunolocalization of deformed wing virus particles within the mite Varroa destructor. J. Gen. Virol. 89, 1685–1689 (2008). PubMed
Cicero J. M. & Sammataro D. The salivary glands of adult female Varroa destructor (Acari: Varroidae), an ectoparasite of the honey bee, Apis mellifera (Hymenoptera: Apidae). Int. J. Acarol. 36, 377–386 (2010).
Bowen-Walker P. L., Martin S. J. & Gunn A. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J. Invertebr. Pathol. 73, 101–106 (1999). PubMed
Genersch E. & Aubert M. Emerging and re-emerging viruses of the honey bee (Apis mellifera L). Vet. Res. 41, 54; 10.1051/vetres/2010027 (2010). PubMed DOI PMC
Martin S. J. et al.. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306 (2012). PubMed
Allen M. F., Ball B. V., White R. F. & Antoniw J. F. The detection of acute paralysis virus in Varroa jacobsoni by the use of a simple indirect ELISA. J. Apic. Res. 25, 100–105 (1986).
Ball B. V. & Allen M. F. The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni. Ann. Appl. Biol. 113, 237–244 (1988).
Nguyen B. K. et al.. Effects of honey bee virus prevalence, Varroa destructor load and queen condition on honey bee colony survival over the winter in Belgium. J. Apic. Res. 50, 195–202 (2011).
Shibuya N. & Nakashima N. Characterization of the 5′ internal ribosome entry site of Plautia stali intestine virus. J. Gen. Virol. 87, 3679–3686 (2006). PubMed
Bonning B. C. & Miller W. A. Dicistroviruses. Annu. Rev. Entomol. 55, 129–150 (2010). PubMed
Asgari S. & Johnson K. N. Insect virology. (Caister Academic Press, 2010).
Azzami K., Ritter W., Tautz J. & Beier H. Infection of honey bees with acute bee paralysis virus does not trigger humoral or cellular immune responses. Arch. Virol. 157, 689–702 (2012). PubMed PMC
Rossmann M. G. et al.. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145–153 (1985). PubMed
Oberste M. S., Maher K., Kilpatrick D. R. & Pallansch M. A. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 73, 1941–1948 (1999). PubMed PMC
Mateu M. G. et al.. A single amino acid substitution affects multiple overlapping epitopes in the major antigenic site of foot-and-mouth disease virus of serotype C. J. Gen. Virol. 71, 629–637 (1990). PubMed
Lochridge V. P. & Hardy M. E. A single-amino-acid substitution in the P2 domain of VP1 of murine norovirus is sufficient for escape from antibody neutralization. J. Virol. 81, 12316–12322 (2007). PubMed PMC
Cheng S.-F., Huang Y.-P., Chen L.-H., Hsu Y.-H. & Tsai C.-H. Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant Physiol. 163, 1598–1608 (2013). PubMed PMC
Hyodo K., Kaido M. & Okuno T. Host and viral RNA-binding proteins involved in membrane targeting, replication and intercellular movement of plant RNA virus genomes. Front. Plant Sci. 5, 321; 10.3389/fpls.2014.00321 (2014). PubMed DOI PMC
Smith G. C. M. & Jackson S. P. The DNA-dependent protein kinase. Genes Dev. 13, 916–934 (1999). PubMed
Cooper A. et al.. HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature 498, 376–379 (2013). PubMed
Ritter W. Varroatosis, a new disease of the bee Apis mellifera. Anim. Res. Dev. 14, 17–35 (1981).
Glinski Z. & Jarosz J. Alterations in haemolymph proteins of drone honey bee larvae parasitized by Varroa jacobsoni. Apidologie 15, 329–338 (1984).
Danty E. et al.. Identification and developmental profiles of hexamerins in antenna and hemolymph of the honeybee, Apis mellifera. Insect Biochem. Mol. Biol. 28, 387–397 (1998). PubMed
Fujita T. et al.. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee. J. Proteome Res. 12, 404–411 (2013). PubMed
Li R. et al.. Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. BMC Genomics 14, 766; 10.1186/1471-2164-14-766 (2013). PubMed DOI PMC
Matysiak J., Hajduk J., Pietrzak L., Schmelzer C. E. H. & Kokot Z. J. Shotgun proteome analysis of honeybee venom using targeted enrichment strategies. Toxicon 90, 255–264 (2014). PubMed
Fraczek R., Zoltowska K. & Lipinski Z. The activity of nineteen hydrolases in extracts from Varroa destructor and in hemolymph of Apis mellifera carnica worker bees. J. Apic. Sci. 53, 43–51 (2009).
Fraczek R., Zoltowska K., Lipinski Z. & Dmitryjuk M. Proteolytic activity in the extracts and in the excretory/secretory products from Varroa destructor parasitic mite of honeybee. Int. J. Acarol. 38, 101–109 (2012).
Lopienska-Biernat E., Dmitryjuk M., Zaobidna E., Lipinski Z. & Zoltowska K. The body composition and enzymes of carbohydrate metabolism of Varroa destructor. J. Apic. Sci. 57, 93–100 (2013).
Dmitryjuk M., Zoltowska K., Fraczek R. & Lipinski Z. Esterases of Varroa destructor (Acari: Varroidae), parasitic mite of the honeybee. Exp. Appl. Acarol. 62, 499–510 (2014). PubMed
Zioni N., Soroker V. & Chejanovsky N. Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1–deformed wing virus recombinant (VDV-1–DWV) in the head of the honey bee. Virology 417, 106–112 (2011). PubMed
Ren J. Y., Cone A., Willmot R. & Jones I. M. Assembly of recombinant Israeli acute paralysis virus capsids. PLoS ONE 9, e105943; 10.1371/journal.pone.0105943 (2014). PubMed DOI PMC
Cargile B. J., Bundy J. L., & Stephenson J. L. Jr. Potential for false positive identifications from large databases through tandem mass spectrometry. J. Proteome Res. 3, 1082–1085 (2004). PubMed
Searle B. C. Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics 10, 1265–1269 (2010). PubMed
Erban T. & Stara J. Methodology for glutathione S-transferase purification and localization in two-dimensional gel electrophoresis performed on the pollen beetle, Meligethes aeneus (Coleoptera: Nitidulidae). J. Asia Pacific Entomol. 17, 369–373 (2014).
Altschul S. F., Gish W., Miller W., Myers E. W. & Lipman D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). PubMed
Waterhouse A. M., Procter J. B., Martin D. M. A., Clamp M. & Barton G. J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009). PubMed PMC
Blom N., Gammeltoft S. & Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362 (1999). PubMed