Food provisioning alters infection dynamics in populations of a wild rodent
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26446813
PubMed Central
PMC4614785
DOI
10.1098/rspb.2015.1939
PII: rspb.2015.1939
Knihovny.cz E-zdroje
- Klíčová slova
- Bordetella bronchiseptica, co-infection, factorial experiment, food supplementation, population limitation, vole,
- MeSH
- Arvicolinae * MeSH
- Bordetella bronchiseptica fyziologie MeSH
- dieta veterinární MeSH
- infekce bakteriemi rodu Bordetella mikrobiologie veterinární MeSH
- náhodné rozdělení MeSH
- nemoci hlodavců mikrobiologie MeSH
- populační dynamika MeSH
- populační růst MeSH
- potravní doplňky analýza MeSH
- roční období MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Finsko MeSH
While pathogens are often assumed to limit the growth of wildlife populations, experimental evidence for their effects is rare. A lack of food resources has been suggested to enhance the negative effects of pathogen infection on host populations, but this theory has received little investigation. We conducted a replicated two-factor enclosure experiment, with introduction of the bacterium Bordetella bronchiseptica and food supplementation, to evaluate the individual and interactive effects of pathogen infection and food availability on vole populations during a boreal winter. We show that prior to bacteria introduction, vole populations were limited by food availability. Bordetella bronchiseptica introduction then reduced population growth and abundance, but contrary to predictions, primarily in food supplemented populations. Infection prevalence and pathological changes in vole lungs were most common in food supplemented populations, and are likely to have resulted from increased congregation and bacteria transmission around feeding stations. Bordetella bronchiseptica-infected lungs often showed protozoan co-infection (consistent with Hepatozoon erhardovae), together with more severe inflammatory changes. Using a multidisciplinary approach, this study demonstrates a complex picture of interactions and underlying mechanisms, leading to population-level effects. Our results highlight the potential for food provisioning to markedly influence disease processes in wildlife mammal populations.
Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
Natural Resources Institute Finland Suonenjoki Finland
Natural Resources Institute Finland Vantaa Finland
Production Animal and Wildlife Health Research Unit Finnish Food Safety Authority Evira Oulu Finland
Zobrazit více v PubMed
Young TP. 1994. Natural die-offs of large mammals: implications for conservation. Conserv. Biol. 8, 410–418. (10.1046/j.1523-1739.1994.08020410.x) DOI
Daszak P, Cunningham AA, Hyatt AD. 2000. Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287, 443–449. (10.1126/science.287.5452.443) PubMed DOI
Hudson PJ, Dobson AP, Newborn D. 1998. Prevention of population cycles by parasite removal. Science 282, 2256–2258. (10.1126/science.282.5397.2256) PubMed DOI
Tompkins DM, Begon M. 1995. Parasites can regulate wildlife populations. Parasitol. Today 15, 311–313. (10.1016/S0169-4758(99)01484-2) PubMed DOI
Kallio ER, Voutilainen L, Vapalahti O, Vaheri A, Henttonen H, Koskela E, Mappes T. 2007. Endemic hantavirus infection impairs the winter survival of its rodent host. Ecology 88, 1911–1916. (10.1890/06-1620.1) PubMed DOI
Burthe S, Telfer S, Begon M, Bennett M, Smith A, Lambin X. 2008. Cowpox virus infection in natural field vole Microtus agrestis populations: significant negative impacts on survival. J. Anim. Ecol. 77, 110–119. (10.1111/j.1365-2656.2007.01302.x.) PubMed DOI PMC
Pedersen AB, Greives TJ. 2008. The interaction of parasites and resources cause crashes in a wild mouse population. J. Anim. Ecol. 77, 370–377. (10.1111/j.1365-2656.2007.01321.x) PubMed DOI
Hansson L, Henttonen H. 1988. Rodent dynamics as community processes. Trends. Ecol. Evol. 3, 195–200. (10.1016/0169-5347(88)90006-7) PubMed DOI
Korpela K, et al. 2013. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob. Change Biol. 19, 697–710. (10.1111/gcb.12099) PubMed DOI
Cornulier T, et al. 2013. Europe-wide dampening of population cycles in keystone herbivores. Science 340, 63–66. (10.1126/science.1228992) PubMed DOI
Krebs CJ. 2013. Population fluctuations in rodents. Chicago, IL: The University of Chicago Press.
Elton CS. 1924. Periodic fluctuations in the numbers of animals: their causes and effects. J. Exp. Biol. 2, 119–163.
Elton C, Davis DHS, Findlay GM. 1935. An epidemic among voles (Microtus agrestis) on the Scottish border in the spring of 1934. J. Anim. Ecol. 4, 277–288. (10.2307/1018) DOI
Soveri T, Henttonen H, Rudbäck E, Schildt R, Tanskanen R, Husu-Kallio J, Haukisalmi V, Sakura A, Laakkonen J. 2000. Disease patterns in field and bank vole populations during a cyclic decline in central Finland. Comp. Immunol. Microbiol. Infect. Dis. 23, 73–89. (10.1016/S0147-9571(99)00057-0) PubMed DOI
Woolfrey BF, Moody JA. 1991. Human infections associated with Bordetella bronchiseptica. Clin. Microbiol. Rev. 4, 243–255. PubMed PMC
Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, Mooi FR. 2005. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 1, e45 (10.1371/journal.ppat.0010045) PubMed DOI PMC
Jensen WI, Duncan RM. 1980. Bordetella bronchiseptica associated with pulmonary disease in mountain voles (Microtus montanus). J. Wildl. Dis. 16, 11–14. (10.7589/0090-3558-16.1.11) PubMed DOI
Norrdahl K, Korpimäki E. 2002. Changes in individual quality during a 3-year population cycle of voles. Oecologia 130, 239–249. (10.1007/s004420100795) PubMed DOI
Huitu O, Koivula M, Korpimäki E, Klemola T, Norrdahl K. 2003. Winter food supply limits growth of northern vole populations in the absence of predation. Ecology 84, 2108–2118. (10.1890/02-0040) DOI
Huitu O, Jokinen I, Korpimäki E, Koskela E, Mappes T. 2007. Phase dependence in winter physiological condition of cyclic voles. Oikos 116, 565–577. (10.1111/j.0030-1299.2007.15488.x) DOI
Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M. 2008. Poor condition and infection: a vicious circle in natural populations. Proc. R. Soc. B 275, 1753–1759. (10.1098/rspb.2008.0147) PubMed DOI PMC
Beldomenico PM, Begon M. 2010. Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol. Evol. 25, 21–27. (10.1016/j.tree.2009.06.015) PubMed DOI
Sheldon BC, Verhulst S. 1996. Ecological immunity: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321. (10.1016/0169-5347(96)10039-2) PubMed DOI
Lochmiller RL, Deerenberg C. 2000. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88, 87–98. (10.1034/j.1600-0706.2000.880110.x) DOI
Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M. 2008. The dynamics of health in wild field vole populations: a haematological perspective. J. Anim. Ecol. 77, 984–997. (doi:0.1111/j.1365-2656.2008.01413.x) PubMed PMC
Myllymäki A. 1977. Demographic mechanisms in the fluctuating populations of the field vole Microtus agrestis. Oikos 29, 468–493. (10.2307/3543588) DOI
Krebs CJ. 1966. Demographic changes in fluctuating populations of Microtus californicus. Ecol. Monogr. 36, 239–273. (10.2307/1942418) DOI
Schulte-Hostedde AI, Millar JS, Hickling GJ. 2001. Evaluating body condition in small mammals. Can. J. Zool. 79, 1021–1029. (10.1139/z2012-055) DOI
Forbes KM, Stuart P, Mappes T, Hoset KS, Henttonen H, Huitu O. 2014. Diet quality limits summer growth of field vole populations. PLoS ONE 9, e91113 (10.1371/journal.pone.0091113) PubMed DOI PMC
Otis DL, Burnham KP, White GC, Anderson DR. 1978. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62, 1–135.
Pollock KH, Otto MC. 1983. Robust estimation of population size in closed animal populations from capture-recapture experiments. Biometrics 39, 1035–1049. (10.2307/2531337) PubMed DOI
Sibly RM, Hone J. 2002. Population growth rate and its determinants: an overview. Phil. Trans. R. Soc. Lond. B 357, 1153–1170. (10.1098/rstb.2002.1117) PubMed DOI PMC
White GC, Burnham KP. 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46, 120–138. (10.1080/00063659909477239) DOI
Burnham KP, Anderson DR. 2002. Model selection and interference: a practical information-theoretic approach, 2nd edn New York, NY: Springer.
Laakkonen J, Sukura A, Oksanen A, Henttonen H, Soveri T. 2001. Haemogragarines of the genus Hepatozoon (Apicomplexa: Adeleina) in rodents from northern Europe. Folia Parasitol. 48, 263–267. (10.14411/fp.2001.043) PubMed DOI
Forbes KM, Stuart P, Mappes T, Henttonen H, Huitu O. 2014. Food resources and intestinal parasites as limiting factors for boreal vole populations during winter. Ecology 95, 3139–3148. (10.1890/13-2381.1) DOI
Cole RF, Batzli GO. 1979. Nutrition and population dynamics of the prairie vole, Microtus ochrogaster, in central Illinois. J. Anim. Ecol. 48, 455–470. (10.2307/4172) DOI
Helle H, Koskela E, Mappes T. 2012. Life in varying environments: experimental evidence for delayed effects of juvenile environment on adult life history. J. Anim. Ecol. 81, 573–582. (10.1111/j.1365-2656.2011.01937.x) PubMed DOI
Brittingham MC, Temple SA. 1986. A survey of avian mortality at winter feeders. Wildl. Soc. Bull. 14, 445–450.
Robinson RA, et al. 2010. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5, e12215 (10.1371/journal.pone.0012215) PubMed DOI PMC
Becker DJ, Streicker GD, Altizer S. 2015. Linking anthropogenic resources to wildlife-pathogen dynamics: a review and meta-analysis. Ecol. Lett. 18, 483–495. (10.1111/ele.12428) PubMed DOI PMC
Wolff JO, Lidicker WZ. 1981. Communal winter nesting and food sharing in taiga voles. Behav. Ecol. Sociobiol. 9, 237–240. (10.1007/BF00299877) DOI
Ostfeld RS. 1985. Limiting resources and territoriality in microtine rodents. Am. Nat. 126, 1–15. (10.1086/284391) DOI
Hayes JP, Speakman JR, Racey PA. 1992. The contribution of local heating and reducing exposed surface area to the energetic benefits of huddling by short-tailed field voles (Microtus agrestis). Physiol. Zool. 65, 742–762.
Bemis DA, Shek WR, Clifford CB. 2003. Bordetella bronchiseptica infection in mice and rats. Comp. Med. 53, 11–20. PubMed
Telfer S, Lambin X, Birties R, Beldomenico P, Burthe S, Paterson S, Begon M. 2010. Species interactions in a parasite community drive infection risk in a wildlife population. Science 330, 243–246. (10.1126/science.1190333) PubMed DOI PMC
Moret Y, Schmid-Hempel P. 2000. Survival for immunity: the price of immune system activation for bumblebee workers. Science 290, 1166–1168. (10.1126/science.290.5494.1166) PubMed DOI
Daszak P, Cunningham AA. 1999. Extinction by infection. Trends Ecol. Evol. 14, 279 (10.1016/S0169-5347(99)01665-1) PubMed DOI
McCallum H, Dobson A. 2005. Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol. Evol. 10, 190–194. (10.1016/S0169-5347(00)89050-3) PubMed DOI