Clinical features and characteristics of Clostridium difficile PCR-ribotype 176 infection: results from a 1-year university hospital internal ward study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26698842
PubMed Central
PMC4690340
DOI
10.1186/s12941-015-0114-0
PII: 10.1186/s12941-015-0114-0
Knihovny.cz E-zdroje
- MeSH
- analýza přežití MeSH
- antibakteriální látky aplikace a dávkování škodlivé účinky MeSH
- Clostridioides difficile klasifikace genetika izolace a purifikace MeSH
- feces mikrobiologie MeSH
- klostridiové infekce epidemiologie mikrobiologie mortalita patologie MeSH
- lidé MeSH
- nemocnice univerzitní MeSH
- polymerázová řetězová reakce MeSH
- průjem chemicky indukované epidemiologie mikrobiologie patologie MeSH
- recidiva MeSH
- ribotypizace * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
BACKGROUND: Clostridium difficile infection (CDI) is a major cause of antibiotic-associated diarrhoea. Given an increasing CDI incidence and global spread of epidemic ribotypes, a 1-year study was performed to analyse the molecular characteristics of C. difficile isolates and associated clinical outcomes from patients diagnosed with CDI in the Internal Medicine department at University Hospital Motol, Prague from February 2013 to February 2014. RESULTS: A total of 85 unformed stool samples were analysed and CDI was laboratory confirmed in 30 patients (6.8 CDI cases per 10,000 patient bed days and 50.6 CDI cases per 10,000 admissions). The CDI recurrence rate within 3 months of treatment discontinuation was 13.3% (4/30). Mortality within 3 months after first CDI episode was 26.7% (8/30), with CDI the cause of death in two cases. 51.9% of C. difficile isolates belonged to PCR-ribotype 176. MLVA of ribotype 176 isolates revealed two clonal complexes formed by 10/14 isolates. ATLAS scores and Horn's index were higher in patients with ribotype 176 infections than with non-ribotype 176 infections. CONCLUSION: This study highlights the clinical relevance of C. difficile PCR-ribotype 176 and its capacity to spread within a healthcare facility.
Zobrazit více v PubMed
Kuijper EJ, Coignard B, Tüll P, ESCMID Study Group for Clostridium difficile EU Member States; European Centre for Disease Prevention and Control. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect. 2006;12(Suppl 6):2–18. doi: 10.1111/j.1469-0691.2006.01580.x. PubMed DOI
Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, Monnet DL, van Dissel JT, Kuijper EJ, ECDIS Study Group Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 2011;377(9759):63–73. doi: 10.1016/S0140-6736(10)61266-4. PubMed DOI
Davies KA, Longshaw CM, Davis GL, Bouza E, Barbut F, Barna Z, Delmée M, Fitzpatrick F, Ivanova K, Kuijper E, Macovei IS, Mentula S, Mastrantonio P, von Müller L, Oleastro M, Petinaki E, Pituch H, Norén T, Nováková E, Nyč O, Rupnik M, Schmid D, Wilcox MH. Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID) Lancet Infect Dis. 2014;14(12):1208–1219. doi: 10.1016/S1473-3099(14)70991-0. PubMed DOI
Krutova M, Nyc O, Kuijper EJ, Geigerova L, Matejkova J, Bergerova T, Arvand M. A case of imported Clostridium difficile PCR-ribotype 027 infection within the Czech Republic which has a high prevalence of C. difficile ribotype 176. Anaerobe. 2014;30:153–155. doi: 10.1016/j.anaerobe.2014.09.020. PubMed DOI
Valiente E, Cairns MD, Wren BW. The Clostridium difficile PCR ribotype 027 lineage: a pathogen on the move. Clin Microbiol Infect. 2014;20(5):396–404. doi: 10.1111/1469-0691.12619. PubMed DOI
Valiente E, Dawson LF, Cairns MD, Stabler RA, Wren BW. Emergence of new PCR ribotypes from the hypervirulent Clostridium difficile 027 lineage. J Med Microbiol. 2012;61(Pt 1):49–56. doi: 10.1099/jmm.0.036194-0. PubMed DOI PMC
Knetsch CW, Hensgens MP, Harmanus C, van der Bijl MW, Savelkoul PH, Kuijper EJ, Corver J, van Leeuwen HC. Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology. 2011;157(Pt 11):3113–3123. doi: 10.1099/mic.0.051953-0. PubMed DOI
Krutova M, Matejkova J, Nyc O. C. difficile ribotype 027 or 176? Folia Microbiol (Praha). 2014;59(6):523–526. doi: 10.1007/s12223-014-0323-5. PubMed DOI
Obuch-Woszczatyński P, Lachowicz D, Schneider A, Mól A, Pawłowska J, Ożdżeńska-Milke E, Pruszczyk P, Wultańska D, Młynarczyk G, Harmanus C, Kuijper EJ, van Belkum A, Pituch H. Occurrence of Clostridium difficile PCR-ribotype 027 and it’s closely related PCR-ribotype 176 in hospitals in Poland in 2008–2010. Anaerobe. 2014;28:13–17. doi: 10.1016/j.anaerobe.2014.04.007. PubMed DOI
Pituch H, Obuch-Woszczatyński P, Lachowicz D, Wultańska D, Karpiński P, Młynarczyk G, van Dorp SM, Kuijper EJ. Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Euro Surveill. 2015 PubMed
Stubbs SL, Brazier JS, O’Neill GL, Duerden BI. PCR targeted to the 16S–23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol. 1999;37(2):461–463. PubMed PMC
Indra A, Schmid D, Huhulescu S, Hell M, Gattringer R, Hasenberger P, Fiedler A, Wewalka G, Allerberger F. Characterization of clinical Clostridium difficile isolates by PCR ribotyping and detection of toxin genes in Austria, 2006–2007. J Med Microbiol. 2008;57(Pt 6):702–708. doi: 10.1099/jmm.0.47476-0. PubMed DOI
Persson S, Torpdahl M, Olsen KE. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. 2008;4(11):1057–1064. doi: 10.1111/j.1469-0691.2008.02092.x. PubMed DOI
Stewart DB, Berg A, Hegarty J. Predicting recurrence of C. difficile colitis using bacterial virulence factors: binary toxin is the key. J Gastrointest Surg. 2013;17(1):118–124. doi: 10.1007/s11605-012-2056-6. PubMed DOI
Bacci S, Mølbak K, Kjeldsen MK, Olsen KE. Binary toxin and death after Clostridium difficile infection. Emerg Infect Dis. 2011;17(6):976–982. doi: 10.3201/eid/1706.101483. PubMed DOI PMC
Schwan C, Stecher B, Tzivelekidis T, van Ham M, Rohde M, Hardt WD, Wehland J, Aktories K. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog. 2009;5(10):e1000626. doi: 10.1371/journal.ppat.1000626. PubMed DOI PMC
Spigaglia P, Mastrantonio P. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol. 2002;40(9):3470–3475. doi: 10.1128/JCM.40.9.3470-3475.2002. PubMed DOI PMC
Bakker D, Smits WK, Kuijper EJ, Corver J. TcdC does not significantly repress toxin expression in Clostridium difficile 630ΔErm. PLoS One. 2012;7(8):e43247. doi: 10.1371/journal.pone.0043247. PubMed DOI PMC
van den Berg RJ, Schaap I, Templeton KE, Klaassen CHW, Kuijper EJ. Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J J Clin Microbiol. 2007;45(3):1024–1028. doi: 10.1128/JCM.02023-06. PubMed DOI PMC
Goorhuis A, Legaria MC, van den Berg RJ, Harmanus C, Klaassen CH, Brazier JS, Lumelsky G, Kuijper EJ. Application of multiple-locus variable-number tandem-repeat analysis to determine clonal spread of toxin A-negative Clostridium difficile in a general hospital in Buenos Aires. Argent Clin Microbiol Infect. 2009;15(12):1080–1086. doi: 10.1111/j.1469-0691.2009.02759.x. PubMed DOI
Marsh JW, O’Leary MM, Shutt KA, Pasculle AW, Johnson S, Gerding DN, Muto CA, Harrison LH. Multilocus variable-number tandem-repeat analysis for investigation of Clostridium difficile transmission in hospitals. J Clin Microbiol. 2006;44(7):2558–2566. doi: 10.1128/JCM.02364-05. PubMed DOI PMC
Arora V, Kachroo S, Ghantoji SS, DuPont HL, Garey KW. High Horn´s index score predicts poor outcomes in patients with Clostridium difficile infection. J Hosp Infect. 2011;79(1):23–26. doi: 10.1016/j.jhin.2011.04.027. PubMed DOI
Horn SD. Measuring severity of illness: comparisons across institutions. Am J Public Health. 1983;73(1):25–31. doi: 10.2105/AJPH.73.1.25. PubMed DOI PMC
Miller MA, Louie T, Mullane K, Weiss K, Lentnek A, Golan Y, Kean Y, Sears P. Derivation and validation of a simple clinical bedside score (ATLAS) for Clostridium difficile infection which predicts response to therapy. BMC Infect Dis. 2013;13:148. doi: 10.1186/1471-2334-13-148. PubMed DOI PMC
Bauer MP, Kuijper EJ, van Dissel JT. European Society of Clinical Microbiology and Infectious Diseases. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): treatment guidance document for Clostridium difficile infection (CDI) Clin Microbiol Infect. 2009;15(12):1067–1079. doi: 10.1111/j.1469-0691.2009.03099.x. PubMed DOI