Cardiovascular response to peak voluntary exercise in males with cervical spinal cord injury

. 2016 Jul ; 39 (4) : 412-20. [epub] 20151228

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26707873

CONTEXT/OBJECTIVE: Traumatic damage to the cervical spinal cord is usually associated with a disruption of the autonomic nervous system (ANS) and impaired cardiovascular control both during and following exercise. The magnitude of the cardiovascular dysfunction remains unclear. The aim of the current study was to compare cardiovascular responses to peak voluntary exercise in individuals with tetraplegia and able-bodied participants. DESIGN: A case-control study. SUBJECTS: Twenty males with cervical spinal cord injury (SCI) as the Tetra group and 27 able-bodied males as the Control group were included in the study. OUTCOME MEASURES: Blood pressure (BP) response one minute after the peak exercise, peak heart rate (HRpeak), and peak oxygen consumption (VO2peak) on an arm crank ergometer were measured. In the second part of the study, 17 individuals of the Control group completed the Tetra group's workload protocol with the same parameters recorded. RESULTS: There was no increase in BP in response to the exercise in the Tetra group. Able-bodied individuals exhibited significantly increased post-exercise systolic BP after the maximal graded exercise test (123±16%) and after completion of the Tetra group's workload protocol (114±11%) as compared to pre-exercise. The Tetra group VO2peak was 59% and the HRpeak was 73% of the Control group VO2peak and HRpeak, respectively. CONCLUSIONS: BP did not increase following maximal arm crank exercise in males with a cervical SCI unlike the increases observed in the Control group. Some males in the Tetra group appeared to be at risk of severe hypotension following high intensity exercise, which can limit the ability to progressive increase and maintain high intensity exercise.

Zobrazit více v PubMed

Haisma JA, van der Woude LH, Stam HJ, Bergen MP, Sluis TA, Bussmann JB. Physical capacity in wheelchair-dependent persons with a spinal cord injury: a critical review of the literature. Spinal Cord 2006;44(11):642–52. doi: 10.1038/sj.sc.3101915 PubMed DOI

Dallmeijer AJ, van der Woude LH, Hollander PA, Angenot EL. Physical performance in persons with spinal cord injuries after discharge from rehabilitation. Med Sci Sports Exerc 1999;31(8):1111–7. doi: 10.1097/00005768-199908000-00006 PubMed DOI

Wong SC, Bredin SS, Krassioukov AV, Taylor A, Warburton DE. Effects of training status on arterial compliance in able-bodied persons and persons with spinal cord injury. Spinal Cord 2013;51(4):278–81. doi: 10.1038/sc.2012.151 PubMed DOI

Warburton DE, Eng JJ, Krassioukov A, Sproule S, the SRT . Cardiovascular health and exercise rehabilitation in spinal cord injury. Top Spinal Cord Inj Rehabil 2007;13(1):98–122. doi: 10.1310/sci1301-98 PubMed DOI PMC

Bunten DC, Warner AL, Brunnemann SR, Segal JL. Heart rate variability is altered following spinal cord injury. Clin Auton Res 1998;8(6):329–34. doi: 10.1007/BF02309623 PubMed DOI

Furlan JC, Fehlings MG. Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurg Focus 2008;25(5):E13. doi: 10.3171/FOC.2008.25.11.E13 PubMed DOI

Koh J, Brown TE, Beightol LA, Ha CY, Eckberg DL. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects. J Physiol 1994;474(3):483–95. doi: 10.1113/jphysiol.1994.sp020039 PubMed DOI PMC

Ravensbergen HJ, de Groot S, Post MW, Slootman HJ, van der Woude LH, Claydon VE. Cardiovascular function after spinal cord injury: prevalence and progression of dysfunction during inpatient rehabilitation and 5 years following discharge. Neurorehabil Neural Repair 2014;28(3):219–29. doi: 10.1177/1545968313504542 PubMed DOI

Schmid A, Huonker M, Barturen JM, Stahl F, Schmidt-Trucksass A, Konig D, et al. Catecholamines, heart rate, and oxygen uptake during exercise in persons with spinal cord injury. J Appl Physiol 1998;85(2):635–41. PubMed

Krassioukov A. Autonomic dysreflexia: current evidence related to unstable arterial blood pressure control among athletes with spinal cord injury. Clin J Sport Med 2012;22(1):39–45. PubMed

Krassioukov A, Claydon VE. The clinical problems in cardiovascular control following spinal cord injury: an overview. Prog Brain Res 2006;152:223–9. doi: 10.1016/S0079-6123(05)52014-4 PubMed DOI

Coutts KD, Rhodes EC, McKenzie DC. Maximal exercise responses of tetraplegics and paraplegics. J Appl Physiol 1983;55(2):479–82. PubMed

Claydon VE, Hol AT, Eng JJ, Krassioukov AV. Cardiovascular responses and postexercise hypotension after arm cycling exercise in subjects with spinal cord injury. Arch Phys Med Rehabil 2006;87(8):1106–14. doi: 10.1016/j.apmr.2006.05.011 PubMed DOI

Dela F, Mohr T, Jensen CM, Haahr HL, Secher NH, Biering-Sorensen F, et al. Cardiovascular control during exercise: insights from spinal cord-injured humans. Circulation 2003;107(16):2127–33. doi: 10.1161/01.CIR.0000065225.18093.E4 PubMed DOI

Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 2011;34(6):535–46. doi: 10.1179/204577211X13207446293695 PubMed DOI PMC

Sun G, French CR, Martin GR, Younghusband B, Green RC, Xie YG, et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. The American journal of clinical nutrition. 2005;81(1):74–8. PubMed

Martin Ginis KA, Phang SH, Latimer AE, Arbour-Nicitopoulos KP. Reliability and validity tests of the leisure time physical activity questionnaire for people with spinal cord injury. Arch Phys Med Rehabil 2012;93(4):677–82. doi: 10.1016/j.apmr.2011.11.005 PubMed DOI

Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc 1982;14(5):377–81. doi: 10.1249/00005768-198205000-00012 PubMed DOI

Lasko-McCarthey P, Davis JA. Protocol dependency of VO2max during arm cycle ergometry in males with quadriplegia. Med Sci Sports Exerc 1991;23(9):1097–101. doi: 10.1249/00005768-199109000-00016 PubMed DOI

Cohen J. Statistical Power Analysis for the Behavioral Sciences (2nd Edition). Hillsdale, NJ: Lawrence Earlbaum Associates; 1988.

Bonica JJ. Autonomic innervation of the viscera in relation to nerve block. Anesthesiology 1968;29(4):793–813. doi: 10.1097/00000542-196807000-00023 PubMed DOI

Low DA, da Nobrega AC, Mathias CJ. Exercise-induced hypotension in autonomic disorders. Auton Neurosci 2012;171(1–2):66–78. doi: 10.1016/j.autneu.2012.07.008 PubMed DOI

Krediet CT, Wilde AA, Wieling W, Halliwill JR. Exercise related syncope, when it's not the heart. Clin Auton Res 2004;14 Suppl 1:25–36. doi: 10.1007/s10286-004-1005-1 PubMed DOI

Hopman MT, Dueck C, Monroe M, Philips WT, Skinner JS. Limits to maximal performance in individuals with spinal cord injury. Int J Sports Med 1998;19(2):98–103. doi: 10.1055/s-2007-971889 PubMed DOI

Davis GM, Hamzaid NA, Fornusek C. Cardiorespiratory, metabolic, and biomechanical responses during functional electrical stimulation leg exercise: health and fitness benefits. Artif Organs 2008;32(8):625–9. doi: 10.1111/j.1525-1594.2008.00622.x PubMed DOI

Griffin L, Decker MJ, Hwang JY, Wang B, Kitchen K, Ding Z, et al. Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol 2009;19(4):614–22. doi: 10.1016/j.jelekin.2008.03.002 PubMed DOI

Nieshoff EC, Birk TJ, Birk CA, Hinderer SR, Yavuzer G. Double-blinded, placebo-controlled trial of midodrine for exercise performance enhancement in tetraplegia: a pilot study. J Spinal Cord Med 2004;27(3):219–25. PubMed

Karlsson AK. Autonomic dysreflexia. Spinal Cord 1999;37(6):383–91. doi: 10.1038/sj.sc.3100867 PubMed DOI

Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, et al. Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 2011;43(8):1575–81. doi: 10.1249/MSS.0b013e31821ece12 PubMed DOI

Calbet JA, Holmberg HC, Rosdahl H, van Hall G, Jensen-Urstad M, Saltin B. Why do arms extract less oxygen than legs during exercise? Am J Physiol Regul Integr Comp Physiol 2005;289(5):R1448–58. doi: 10.1152/ajpregu.00824.2004 PubMed DOI

West CR, Mills P, Krassioukov AV. Influence of the neurological level of spinal cord injury on cardiovascular outcomes in humans: a meta-analysis. Spinal Cord 2012;50(7):484–92. doi: 10.1038/sc.2012.17 PubMed DOI

Claydon VE, Krassioukov AV. Orthostatic hypotension and autonomic pathways after spinal cord injury. J Neurotrauma 2006;23(12):1713–25. doi: 10.1089/neu.2006.23.1713 PubMed DOI

West CR, Bellantoni A, Krassioukov AV. Cardiovascular function in individuals with incomplete spinal cord injury: a systematic review. Top Spinal Cord Inj Rehabil 2013;19(4):267–78. doi: 10.1310/sci1904-267 PubMed DOI PMC

Máček M, Vávra J. Fyziologie a patofyziologie tělesné zátěže. Praha: Avicenum 1988;353 p.

Stevens PM. Cardiovascular dynamics during orthostasis and the influence of intravascular instrumentation. Am J Cardiol 1966;17(2):211–8. doi: 10.1016/0002-9149(66)90354-7 PubMed DOI

West CR, Wong SC, Krassioukov AV. Autonomic cardiovascular control in Paralympic athletes with spinal cord injury. Med Sci Sports Exerc 2014;46(1):60–8. doi: 10.1249/MSS.0b013e31829e46f3 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...