SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't
Grant support
R01 DK035081
NIDDK NIH HHS - United States
R37 DK035081
NIDDK NIH HHS - United States
DK-35081
NIDDK NIH HHS - United States
Intramural NIH HHS - United States
PubMed
26758086
PubMed Central
PMC4725370
DOI
10.1038/srep19300
PII: srep19300
Knihovny.cz E-resources
- MeSH
- Complement Activation drug effects MeSH
- Insect Proteins pharmacology MeSH
- Complement Inactivating Agents pharmacology MeSH
- Complement Pathway, Classical drug effects MeSH
- Complement C4 antagonists & inhibitors immunology metabolism MeSH
- Complement C1 antagonists & inhibitors immunology metabolism MeSH
- Humans MeSH
- Psychodidae immunology metabolism MeSH
- Recombinant Proteins pharmacology MeSH
- Saliva metabolism MeSH
- Chromatography, High Pressure Liquid MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Names of Substances
- Insect Proteins MeSH
- Complement Inactivating Agents MeSH
- Complement C4 MeSH
- Complement C1 MeSH
- Recombinant Proteins MeSH
Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.
Biology Center of the Czech Academy of Sciences Budweis CZ 370 05 Czech Republic
The University of Texas Health Science Center at Tyler Tyler TX
Vaccine Formulation Laboratory Department of Biochemistry University of Lausanne Switzerland
Vector Biology Section LMVR National Institute of Allergy and Infectious Diseases NIH Rockville MD
See more in PubMed
Ribeiro J. M. & Francischetti I. M. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48, 73–88 (2003). PubMed
Andrade B. B., Teixeira C. R., Barral A. & Barral-Netto M. Haematophagous arthropod saliva and host defense system: a tale of tear and blood. An Acad Bras Cienc 77, 665–93 (2005). PubMed
Alvarenga P. H. et al. The function and three-dimensional structure of a thromboxane A2/cysteinyl leukotriene-binding protein from the saliva of a mosquito vector of the malaria parasite. PLoS Biol 8, e1000547 (2010). PubMed PMC
Xu X. et al. Structure and function of a “yellow” protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection. J Biol Chem 286, 32383–93 (2011). PubMed PMC
Valenzuela J. G., Charlab R., Mather T. N. & Ribeiro J. M. Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J Biol Chem 275, 18717–23 (2000). PubMed
Mendes-Sousa A. F. et al. Different host complement systems and their interactions with saliva from Lutzomyia longipalpis (Diptera, Psychodidae) and Leishmania infantum promastigotes. PLoS One 8, e79787 (2013). PubMed PMC
Barros V. C. et al. The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes. PLoS One 4, e6047 (2009). PubMed PMC
Schroeder H., Daix V., Gillet L., Renauld J. C. & Vanderplasschen A. The paralogous salivary anti-complement proteins IRAC I and IRAC II encoded by Ixodes ricinus ticks have broad and complementary inhibitory activities against the complement of different host species. Microbes Infect 9, 247–50 (2007). PubMed
Walport M. J. Complement. First of two parts. N Engl J Med 344, 1058–66 (2001). PubMed
Walport M. J. Complement. Second of two parts. N Engl J Med 344, 1140–4 (2001). PubMed
Ricklin D., Hajishengallis G., Yang K. & Lambris J. D. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11, 785–97 (2010). PubMed PMC
Holers V. M. The spectrum of complement alternative pathway-mediated diseases. Immunol Rev 223, 300–16 (2008). PubMed
Dempsey P. W., Allison M. E., Akkaraju S., Goodnow C. C. & Fearon D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–50 (1996). PubMed
Carroll M. C. Complement and humoral immunity. Vaccine 26 Suppl 8, I28–33 (2008). PubMed PMC
Bjork J., Hugli T. E. & Smedegard G. Microvascular effects of anaphylatoxins C3a and C5a. J Immunol 134, 1115–9 (1985). PubMed
Pangburn M. K., Ferreira V. P. & Cortes C. Discrimination between host and pathogens by the complement system. Vaccine 26 Suppl 8, I15–21 (2008). PubMed PMC
Arlaud G. J., Gaboriaud C., Thielens N. M. & Rossi V. Structural biology of C1. Biochem Soc Trans 30, 1001–6 (2002). PubMed
Gasque P. Complement: a unique innate immune sensor for danger signals. Mol Immunol 41, 1089–98 (2004). PubMed
Cavalcante R. R., Pereira M. H. & Gontijo N. F. Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects. Parasitology 127, 87–93 (2003). PubMed
Ribeiro J. M., Vachereau A., Modi G. B. & Tesh R. B. A novel vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. Science 243, 212–4 (1989). PubMed
Collin N. et al. Lufaxin, a novel factor Xa inhibitor from the salivary gland of the sand fly Lutzomyia longipalpis blocks protease-activated receptor 2 activation and inhibits inflammation and thrombosis in vivo. Arterioscler Thromb Vasc Biol 32, 2185–98 (2012). PubMed PMC
Charlab R., Valenzuela J. G., Rowton E. D. & Ribeiro J. M. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci USA 96, 15155–60 (1999). PubMed PMC
Abdeladhim M., Kamhawi S. & Valenzuela J. G. What’s behind a sand fly bite ? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol 28, 691–703 (2014). PubMed PMC
Kato H. et al. Analysis of salivary gland transcripts of the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis. Infect Genet Evol 13, 56–66 (2013). PubMed PMC
de Moura T. R. et al. Functional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: identification of a protective salivary protein against Leishmania braziliensis infection. PLoS Negl Trop Dis 7, e2242 (2013). PubMed PMC
Abdeladhim M. et al. Updating the salivary gland transcriptome of Phlebotomus papatasi (Tunisian strain): the search for sand fly-secreted immunogenic proteins for humans. PLoS One 7, e47347 (2012). PubMed PMC
Valenzuela J. G., Garfield M., Rowton E. D. & Pham V. M. Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi. J Exp Biol 207, 3717–29 (2004). PubMed
Gomes R. et al. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci USA 105, 7845–50 (2008). PubMed PMC
Tavares N. M. et al. Lutzomyia longipalpis saliva or salivary protein LJM19 protects against Leishmania braziliensis and the saliva of its vector, Lutzomyia intermedia. PLoS Negl Trop Dis 5, e1169 (2011). PubMed PMC
Wasowska B. A., Lee C. Y., Halushka M. K. & Baldwin W. M., 3rd. New concepts of complement in allorecognition and graft rejection. Cell Immunol 248, 18–30 (2007). PubMed PMC
Berentsen S. & Sundic T. Red blood cell destruction in autoimmune hemolytic anemia: role of complement and potential new targets for therapy. Biomed Res Int 2015, 363278 (2015). PubMed PMC
Thurman J. M. Complement in kidney disease: core curriculum 2015. Am J Kidney Dis 65, 156–68 (2015). PubMed PMC
Ricklin D. & Lambris J. D. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol 190, 3831–8 (2013). PubMed PMC
Ricklin D. & Lambris J. D. Progress and Trends in Complement Therapeutics. Adv Exp Med Biol 735, 1–22 (2013). PubMed PMC
Sharp J. A., Whitley P. H., Cunnion K. M. & Krishna N. K. Peptide inhibitor of complement c1, a novel suppressor of classical pathway activation: mechanistic studies and clinical potential. Front Immunol 5, 406 (2014). PubMed PMC
Thomas K. A. et al. An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA. Am J Transplant 15, 2037–49 (2015). PubMed PMC
Sahu A. & Lambris J. D. Complement inhibitors: a resurgent concept in anti-inflammatory therapeutics. Immunopharmacology 49, 133–48 (2000). PubMed
Valck C. et al. Molecular mechanisms involved in the inactivation of the first component of human complement by Trypanosoma cruzi calreticulin. Mol Immunol 47, 1516–21 (2010). PubMed
Catty D. R., C. Production and quality control of polyclonal antibodies.
Modi G. B. & Tesh R. B. A simple technique for mass rearing Lutzomyia longipalpis and Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J Med Entomol 20, 568–9 (1983). PubMed
Teixeira C. et al. Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America. PLoS Negl Trop Dis 4, e638 (2010). PubMed PMC
Collin N. et al. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania. PLoS Pathog 5, e1000441 (2009). PubMed PMC
Christopherson R. I. Desalting protein solutions in a centrifuge column. Methods Enzymol 91, 278–81 (1983). PubMed