• This record comes from PubMed

SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis

. 2016 Jan 13 ; 6 () : 19300. [epub] 20160113

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't

Grant support
R01 DK035081 NIDDK NIH HHS - United States
R37 DK035081 NIDDK NIH HHS - United States
DK-35081 NIDDK NIH HHS - United States
Intramural NIH HHS - United States

Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.

See more in PubMed

Ribeiro J. M. & Francischetti I. M. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48, 73–88 (2003). PubMed

Andrade B. B., Teixeira C. R., Barral A. & Barral-Netto M. Haematophagous arthropod saliva and host defense system: a tale of tear and blood. An Acad Bras Cienc 77, 665–93 (2005). PubMed

Alvarenga P. H. et al. The function and three-dimensional structure of a thromboxane A2/cysteinyl leukotriene-binding protein from the saliva of a mosquito vector of the malaria parasite. PLoS Biol 8, e1000547 (2010). PubMed PMC

Xu X. et al. Structure and function of a “yellow” protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection. J Biol Chem 286, 32383–93 (2011). PubMed PMC

Valenzuela J. G., Charlab R., Mather T. N. & Ribeiro J. M. Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J Biol Chem 275, 18717–23 (2000). PubMed

Mendes-Sousa A. F. et al. Different host complement systems and their interactions with saliva from Lutzomyia longipalpis (Diptera, Psychodidae) and Leishmania infantum promastigotes. PLoS One 8, e79787 (2013). PubMed PMC

Barros V. C. et al. The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes. PLoS One 4, e6047 (2009). PubMed PMC

Schroeder H., Daix V., Gillet L., Renauld J. C. & Vanderplasschen A. The paralogous salivary anti-complement proteins IRAC I and IRAC II encoded by Ixodes ricinus ticks have broad and complementary inhibitory activities against the complement of different host species. Microbes Infect 9, 247–50 (2007). PubMed

Walport M. J. Complement. First of two parts. N Engl J Med 344, 1058–66 (2001). PubMed

Walport M. J. Complement. Second of two parts. N Engl J Med 344, 1140–4 (2001). PubMed

Ricklin D., Hajishengallis G., Yang K. & Lambris J. D. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11, 785–97 (2010). PubMed PMC

Holers V. M. The spectrum of complement alternative pathway-mediated diseases. Immunol Rev 223, 300–16 (2008). PubMed

Dempsey P. W., Allison M. E., Akkaraju S., Goodnow C. C. & Fearon D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–50 (1996). PubMed

Carroll M. C. Complement and humoral immunity. Vaccine 26 Suppl 8, I28–33 (2008). PubMed PMC

Bjork J., Hugli T. E. & Smedegard G. Microvascular effects of anaphylatoxins C3a and C5a. J Immunol 134, 1115–9 (1985). PubMed

Pangburn M. K., Ferreira V. P. & Cortes C. Discrimination between host and pathogens by the complement system. Vaccine 26 Suppl 8, I15–21 (2008). PubMed PMC

Arlaud G. J., Gaboriaud C., Thielens N. M. & Rossi V. Structural biology of C1. Biochem Soc Trans 30, 1001–6 (2002). PubMed

Gasque P. Complement: a unique innate immune sensor for danger signals. Mol Immunol 41, 1089–98 (2004). PubMed

Cavalcante R. R., Pereira M. H. & Gontijo N. F. Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects. Parasitology 127, 87–93 (2003). PubMed

Ribeiro J. M., Vachereau A., Modi G. B. & Tesh R. B. A novel vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis. Science 243, 212–4 (1989). PubMed

Collin N. et al. Lufaxin, a novel factor Xa inhibitor from the salivary gland of the sand fly Lutzomyia longipalpis blocks protease-activated receptor 2 activation and inhibits inflammation and thrombosis in vivo. Arterioscler Thromb Vasc Biol 32, 2185–98 (2012). PubMed PMC

Charlab R., Valenzuela J. G., Rowton E. D. & Ribeiro J. M. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci USA 96, 15155–60 (1999). PubMed PMC

Abdeladhim M., Kamhawi S. & Valenzuela J. G. What’s behind a sand fly bite ? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol 28, 691–703 (2014). PubMed PMC

Kato H. et al. Analysis of salivary gland transcripts of the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis. Infect Genet Evol 13, 56–66 (2013). PubMed PMC

de Moura T. R. et al. Functional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: identification of a protective salivary protein against Leishmania braziliensis infection. PLoS Negl Trop Dis 7, e2242 (2013). PubMed PMC

Abdeladhim M. et al. Updating the salivary gland transcriptome of Phlebotomus papatasi (Tunisian strain): the search for sand fly-secreted immunogenic proteins for humans. PLoS One 7, e47347 (2012). PubMed PMC

Valenzuela J. G., Garfield M., Rowton E. D. & Pham V. M. Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi. J Exp Biol 207, 3717–29 (2004). PubMed

Gomes R. et al. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci USA 105, 7845–50 (2008). PubMed PMC

Tavares N. M. et al. Lutzomyia longipalpis saliva or salivary protein LJM19 protects against Leishmania braziliensis and the saliva of its vector, Lutzomyia intermedia. PLoS Negl Trop Dis 5, e1169 (2011). PubMed PMC

Wasowska B. A., Lee C. Y., Halushka M. K. & Baldwin W. M., 3rd. New concepts of complement in allorecognition and graft rejection. Cell Immunol 248, 18–30 (2007). PubMed PMC

Berentsen S. & Sundic T. Red blood cell destruction in autoimmune hemolytic anemia: role of complement and potential new targets for therapy. Biomed Res Int 2015, 363278 (2015). PubMed PMC

Thurman J. M. Complement in kidney disease: core curriculum 2015. Am J Kidney Dis 65, 156–68 (2015). PubMed PMC

Ricklin D. & Lambris J. D. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol 190, 3831–8 (2013). PubMed PMC

Ricklin D. & Lambris J. D. Progress and Trends in Complement Therapeutics. Adv Exp Med Biol 735, 1–22 (2013). PubMed PMC

Sharp J. A., Whitley P. H., Cunnion K. M. & Krishna N. K. Peptide inhibitor of complement c1, a novel suppressor of classical pathway activation: mechanistic studies and clinical potential. Front Immunol 5, 406 (2014). PubMed PMC

Thomas K. A. et al. An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA. Am J Transplant 15, 2037–49 (2015). PubMed PMC

Sahu A. & Lambris J. D. Complement inhibitors: a resurgent concept in anti-inflammatory therapeutics. Immunopharmacology 49, 133–48 (2000). PubMed

Valck C. et al. Molecular mechanisms involved in the inactivation of the first component of human complement by Trypanosoma cruzi calreticulin. Mol Immunol 47, 1516–21 (2010). PubMed

Catty D. R., C. Production and quality control of polyclonal antibodies.

Modi G. B. & Tesh R. B. A simple technique for mass rearing Lutzomyia longipalpis and Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J Med Entomol 20, 568–9 (1983). PubMed

Teixeira C. et al. Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America. PLoS Negl Trop Dis 4, e638 (2010). PubMed PMC

Collin N. et al. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania. PLoS Pathog 5, e1000441 (2009). PubMed PMC

Christopherson R. I. Desalting protein solutions in a centrifuge column. Methods Enzymol 91, 278–81 (1983). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...