• This record comes from PubMed

Triplet-triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae

. 2016 Apr ; 1857 (4) : 341-9. [epub] 20160119

Language English Country Netherlands Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Room temperature transient absorption spectroscopy with nanosecond resolution was used to study quenching of the chlorophyll triplet states by carotenoids in two light-harvesting complexes of the dinoflagellate Amphidinium carterae: the water soluble peridinin-chlorophyll protein complex and intrinsic, membrane chlorophyll a-chlorophyll c2-peridinin protein complex. The combined study of the two complexes facilitated interpretation of a rather complicated relaxation observed in the intrinsic complex. While a single carotenoid triplet state was resolved in the peridinin-chlorophyll protein complex, evidence of at least two different carotenoid triplets was obtained for the intrinsic light-harvesting complex. Most probably, each of these carotenoids protects different chlorophylls. In both complexes the quenching of the chlorophyll triplet states by carotenoids occurs with a very high efficiency (~100%), and with transfer times estimated to be in the order of 0.1ns or even faster. The triplet-triplet energy transfer is thus much faster than formation of the chlorophyll triplet states by intersystem crossing. Since the triplet states of chlorophylls are formed during the whole lifetime of their singlet states, the apparent lifetimes of both states are the same, and observed to be equal to the carotenoid triplet state rise time (~5ns).

References provided by Crossref.org

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...