TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26811421
PubMed Central
PMC4748576
DOI
10.1083/jcb.201507042
PII: jcb.201507042
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- chromatin metabolismus MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- fosforylace MeSH
- ftalaziny farmakologie MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- homologní rekombinace * MeSH
- interakční proteinové domény a motivy MeSH
- jaderné proteiny genetika metabolismus MeSH
- lidé MeSH
- nádory vaječníků farmakoterapie enzymologie genetika patologie MeSH
- PARP inhibitory farmakologie MeSH
- piperaziny farmakologie MeSH
- polo-like kinasa 1 MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- proteiny buněčného cyklu metabolismus MeSH
- protoonkogenní proteiny metabolismus MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- restrukturace chromatinu * MeSH
- RNA interference MeSH
- signální transdukce účinky léků MeSH
- transfekce MeSH
- transportní proteiny genetika metabolismus MeSH
- vazba proteinů MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- DNA vazebné proteiny MeSH
- ftalaziny MeSH
- jaderné proteiny MeSH
- olaparib MeSH Prohlížeč
- PARP inhibitory MeSH
- piperaziny MeSH
- protein-serin-threoninkinasy MeSH
- proteiny buněčného cyklu MeSH
- protoonkogenní proteiny MeSH
- RAD51 protein, human MeSH Prohlížeč
- rekombinasa Rad51 MeSH
- TOPBP1 protein, human MeSH Prohlížeč
- transportní proteiny MeSH
Topoisomerase IIβ-binding protein 1 (TOPBP1) participates in DNA replication and DNA damage response; however, its role in DNA repair and relevance for human cancer remain unclear. Here, through an unbiased small interfering RNA screen, we identified and validated TOPBP1 as a novel determinant whose loss sensitized human cells to olaparib, an inhibitor of poly(ADP-ribose) polymerase. We show that TOPBP1 acts in homologous recombination (HR) repair, impacts olaparib response, and exhibits aberrant patterns in subsets of human ovarian carcinomas. TOPBP1 depletion abrogated RAD51 loading to chromatin and formation of RAD51 foci, but without affecting the upstream HR steps of DNA end resection and RPA loading. Furthermore, TOPBP1 BRCT domains 7/8 are essential for RAD51 foci formation. Mechanistically, TOPBP1 physically binds PLK1 and promotes PLK1 kinase-mediated phosphorylation of RAD51 at serine 14, a modification required for RAD51 recruitment to chromatin. Overall, our results provide mechanistic insights into TOPBP1's role in HR, with potential clinical implications for cancer treatment.
Danish Cancer Society Research Center DK 2100 Copenhagen Denmark
Department of Biology University of Copenhagen DK 2200 Copenhagen Denmark
The Sir William Dunn School of Pathology University of Oxford Oxford OX1 3RE England UK
Zobrazit více v PubMed
Bekker-Jensen S., Lukas C., Kitagawa R., Melander F., Kastan M.B., Bartek J., and Lukas J.. 2006. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 173:195–206. 10.1083/jcb.200510130 PubMed DOI PMC
Bryant H.E., Schultz N., Thomas H.D., Parker K.M., Flower D., Lopez E., Kyle S., Meuth M., Curtin N.J., and Helleday T.. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 434:913–917. 10.1038/nature03443 PubMed DOI
Certo M.T., Ryu B.Y., Annis J.E., Garibov M., Jarjour J., Rawlings D.J., and Scharenberg A.M.. 2011. Tracking genome engineering outcome at individual DNA breakpoints. Nat. Methods. 8:671–676. 10.1038/nmeth.1648 PubMed DOI PMC
Cescutti R., Negrini S., Kohzaki M., and Halazonetis T.D.. 2010. TopBP1 functions with 53BP1 in the G1 DNA damage checkpoint. EMBO J. 29:3723–3732. 10.1038/emboj.2010.238 PubMed DOI PMC
Chen J., Silver D.P., Walpita D., Cantor S.B., Gazdar A.F., Tomlinson G., Couch F.J., Weber B.L., Ashley T., Livingston D.M., and Scully R.. 1998. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell. 2:317–328. 10.1016/S1097-2765(00)80276-2 PubMed DOI
Chowdhury P., Lin G.E., Liu K., Song Y., Lin F.T., and Lin W.C.. 2014. Targeting TopBP1 at a convergent point of multiple oncogenic pathways for cancer therapy. Nat. Commun. 5:5476 10.1038/ncomms6476 PubMed DOI PMC
Farmer H., McCabe N., Lord C.J., Tutt A.N., Johnson D.A., Richardson T.B., Santarosa M., Dillon K.J., Hickson I., Knights C., et al. . 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 434:917–921. 10.1038/nature03445 PubMed DOI
Frankum J., Moudry P., Brough R., Hodny Z., Ashworth A., Bartek J., and Lord C.J.. 2015. Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity. Oncotarget. 6:10746–10758. 10.18632/oncotarget.3628 PubMed DOI PMC
Going J.J., Nixon C., Dornan E.S., Boner W., Donaldson M.M., and Morgan I.M.. 2007. Aberrant expression of TopBP1 in breast cancer. Histopathology. 50:418–424. 10.1111/j.1365-2559.2007.02622.x PubMed DOI
Hanafusa H., Kedashiro S., Tezuka M., Funatsu M., Usami S., Toyoshima F., and Matsumoto K.. 2015. PLK1-dependent activation of LRRK1 regulates spindle orientation by phosphorylating CDK5RAP2. Nat. Cell Biol. 17:1024–1035. 10.1038/ncb3204 PubMed DOI
Jackson S.P., and Bartek J.. 2009. The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 10.1038/nature08467 PubMed DOI PMC
Kumagai A., Lee J., Yoo H.Y., and Dunphy W.G.. 2006. TopBP1 activates the ATR-ATRIP complex. Cell. 124:943–955. 10.1016/j.cell.2005.12.041 PubMed DOI
Liu K., Bellam N., Lin H.Y., Wang B., Stockard C.R., Grizzle W.E., and Lin W.C.. 2009. Regulation of p53 by TopBP1: a potential mechanism for p53 inactivation in cancer. Mol. Cell. Biol. 29:2673–2693. 10.1128/MCB.01140-08 PubMed DOI PMC
Liu K., Graves J.D., Scott J.D., Li R., and Lin W.C.. 2013. Akt switches TopBP1 function from checkpoint activation to transcriptional regulation through phosphoserine binding-mediated oligomerization. Mol. Cell. Biol. 33:4685–4700. 10.1128/MCB.00373-13 PubMed DOI PMC
Lord C.J., Tutt A.N., and Ashworth A.. 2015. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu. Rev. Med. 66:455–470. 10.1146/annurev-med-050913-022545 PubMed DOI
Luo X., and Kraus W.L.. 2012. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26:417–432. 10.1101/gad.183509.111 PubMed DOI PMC
Martins L.R., Lúcio P., Melão A., Antunes I., Cardoso B.A., Stansfield R., Bertilaccio M.T., Ghia P., Drygin D., Silva M.G., and Barata J.T.. 2014. Activity of the clinical-stage CK2-specific inhibitor CX-4945 against chronic lymphocytic leukemia. Leukemia. 28:179–182. 10.1038/leu.2013.232 PubMed DOI
Mordes D.A., Glick G.G., Zhao R., and Cortez D.. 2008. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev. 22:1478–1489. 10.1101/gad.1666208 PubMed DOI PMC
Morishima K., Sakamoto S., Kobayashi J., Izumi H., Suda T., Matsumoto Y., Tauchi H., Ide H., Komatsu K., and Matsuura S.. 2007. TopBP1 associates with NBS1 and is involved in homologous recombination repair. Biochem. Biophys. Res. Commun. 362:872–879. 10.1016/j.bbrc.2007.08.086 PubMed DOI
Murai J., Huang S.Y., Das B.B., Renaud A., Zhang Y., Doroshow J.H., Ji J., Takeda S., and Pommier Y.. 2012. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72:5588–5599. 10.1158/0008-5472.CAN-12-2753 PubMed DOI PMC
Rappas M., Oliver A.W., and Pearl L.H.. 2011. Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1. Nucleic Acids Res. 39:313–324. 10.1093/nar/gkq743 PubMed DOI PMC
Reuter M., Zelensky A., Smal I., Meijering E., van Cappellen W.A., de Gruiter H.M., van Belle G.J., van Royen M.E., Houtsmuller A.B., Essers J., et al. . 2014. BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells. J. Cell Biol. 207:599–613. 10.1083/jcb.201405014 PubMed DOI PMC
Shahid T., Soroka J., Kong E.H., Malivert L., McIlwraith M.J., Pape T., West S.C., and Zhang X.. 2014. Structure and mechanism of action of the BRCA2 breast cancer tumor suppressor. Nat. Struct. Mol. Biol. 21:962–968. 10.1038/nsmb.2899 PubMed DOI PMC
Sokka M., Parkkinen S., Pospiech H., and Syväoja J.E.. 2010. Function of TopBP1 in genome stability. Subcell. Biochem. 50:119–141. 10.1007/978-90-481-3471-7_7 PubMed DOI
Sy S.M., Huen M.S., and Chen J.. 2009. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc. Natl. Acad. Sci. USA. 106:7155–7160. 10.1073/pnas.0811159106 PubMed DOI PMC
Toledo L.I., Murga M., Gutierrez-Martinez P., Soria R., and Fernandez-Capetillo O.. 2008. ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes Dev. 22:297–302. 10.1101/gad.452308 PubMed DOI PMC
Yamane K., Kawabata M., and Tsuruo T.. 1997. A DNA-topoisomerase-II-binding protein with eight repeating regions similar to DNA-repair enzymes and to a cell-cycle regulator. Eur. J. Biochem. 250:794–799. 10.1111/j.1432-1033.1997.00794.x PubMed DOI
Yata K., Lloyd J., Maslen S., Bleuyard J.Y., Skehel M., Smerdon S.J., and Esashi F.. 2012. Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair. Mol. Cell. 45:371–383. 10.1016/j.molcel.2011.12.028 PubMed DOI PMC
Yata K., Bleuyard J.Y., Nakato R., Ralf C., Katou Y., Schwab R.A., Niedzwiedz W., Shirahige K., and Esashi F.. 2014. BRCA2 coordinates the activities of cell-cycle kinases to promote genome stability. Cell Reports. 7:1547–1559. 10.1016/j.celrep.2014.04.023 PubMed DOI PMC
Yuan S.S., Lee S.Y., Chen G., Song M., Tomlinson G.E., and Lee E.Y.. 1999. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res. 59:3547–3551. PubMed