Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow

. 2016 Apr ; 92 (4) : fiw030. [epub] 20160215

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26884467

Grantová podpora
I 1951 Austrian Science Fund FWF - Austria
P 24242 Austrian Science Fund FWF - Austria

Red snow is a well-known phenomenon caused by microalgae thriving in alpine and polar regions during the melting season. The ecology and biodiversity of these organisms, which are adapted to low temperatures, high irradiance and freeze-thaw events, are still poorly understood. We compared two different snow habitats containing two different green algal genera in the European Alps, namely algae blooming in seasonal rock-based snowfields (Chlamydomonas nivalis) and algae dominating waterlogged snow bedded over ice (Chlainomonassp.). Despite the morphological similarity of the red spores found at the snow surface, we found differences in intracellular organization investigated by light and transmission electron microscopy and in secondary pigments investigated by chromatographic analysis in combination with mass spectrometry. Spores ofChlainomonassp. show clear differences fromChlamydomonas nivalisin cell wall arrangement and plastid organization. Active photosynthesis at ambient temperatures indicates a high physiological activity, despite no cell division being present. Lipid bodies containing the carotenoid astaxanthin, which produces the red color, dominate cells of both species, but are modified differently. While inChlainomonassp. astaxanthin is mainly esterified with two fatty acids and is more apolar, inChamydomonas nivalis, in contrast, less apolar monoesters prevail.

Zobrazit více v PubMed

Buchner O, Lütz C, Holzinger A. Design and construction of a new temperature controlled chamber for light- and confocal microscopy under monitored conditions: biological application for plant samples. J Microsc. 2007;225:183–91. PubMed

Cepák V, Lukavský J. Cryoseston of the Pirin Mountains, Bulgaria. Acta Bot Croat. 2013;72:257–68.

Duval B, Duval E, Hoham RW. Snow algae of the Sierra Nevada, Spain, and High Atlas mountains of Morocco. Internatl Microbiol. 1999;2:39–42. PubMed

Ettl H. Süßwasserflora von Mitteleuropa. Band 9: Chloropyta I. Phytomonadina. Stuttgart, New York: Fischer; 1983.

Hoham RW. New findings in the life history of the snow alga, Chlainomonas rubra (Stein et Brooke) comb. nov. (Chlorophyta, Volvocales) Syesis. 1974a;7:239–47.

Hoham RW. Chlainomonas kolii (Hardy et Curl) comb. nov. (Chlorophyta, Volvocales), A revision of the snow alga, Trachelomonas kolii Hardy et Curl (Euglenophyta, Euglenales) J Phycol. 1974b;10:392–96.

Hoham RW, Berman JD, Rogers HS, et al. Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia. 2006;45:319–30.

Hoham RW, Duval B. Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG, Pomeroy JW, Walker DA, et al., editors. Snow Ecology. New York: Cambridge University Press; 2001. pp. 168–228.

Hoham RW, Filbin RW, Frey FM, et al. The optimum pH of the green snow algae, Chloromonas tughillensis and Chloromonas chanangoensis, from Upstate New York. Arct Antarct Alp Res. 2007;39:65–73.

Holzinger A, Roleda MY, Lütz C. The vegetative arctic green alga Zygnema is insensitive to experimental UV exposure. Micron. 2009;40:831–8. PubMed

Kawecka B. Biology and ecology of snow algae. 2. Formation of aplanospores in Chlamyomonasnivalis (Bauer) Wille (Chlorophyta, Volvocales) Acta Hydrobiol. 1981;23:211–15.

Kol E. Kryobiologie. Biologie und Limnologie des Schnees und Eises. I. Kryovegetation. In: Elster HJ, Ohle W, editors. Die Binnengewässer, Band XXIV. Stuttgart: Schweizerbart'sche Verlagsbuchhandlung; 1968.

Kol E. Vom roten Schnee der Tiroler Alpen. Ann Hist Natur Mus Nat Hung. 1970;62:129–36.

Komárek J, Nedbalová L. Green cryosestic algae. In: Seckbach J, editor. Cellular origin, life in extreme habitats and astrobiology, volume 11, Algae and cyanobacteria in extreme environments, part 4, Phototrophs in cold environments. Dordrecht: Springer; 2008. pp. 323–44.

Kvíderová J. Research on cryosestic communities in Svalbard: the snow algae of temporary snowfields in Petuniabukta, Central Svalbard. Czech Polar Rep. 2012;2:8–19.

Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res. 2010;106:155–77. PubMed

Leya T. Snow Algae: Adaptation Strategies to Survive on Snow and Ice. In: Seckbach J, Oren A, Stan-Lotter H, editors. Cellular origin, life in extreme habitats and astrobiology, volume 27, Polyextremophiles: Life under multiple forms of stress. Dordrecht: Springer; 2013. pp. 401–23.

Li Y, Sommerfeld M, Chen F, et al. Consumption of oxygen by astaxanthin biosynthesis: A protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae) J Plant Physiol. 2008;165:1783–97. PubMed

Lukeš M, Procházková L, Shmidt V, et al. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae) FEMS Microbiol Ecol. 2014;89:303–15. PubMed

Lutz S, Anesio AM, Edwards A, et al. Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol. 2015;6:307. PubMed PMC

Lütz-Meindl U, Lütz C. Analysis of element accumulation in cell wall attached intracellular particles of snow algae by EELS and ESI. Micron. 2006;37:452–8. PubMed

Matsuzaki R, Hara Y, Nozaki H. A taxonomic study of snow Chloromonas species (Volvocales, Chlorophyceae) based on light and electron microscopy and molecular analysis of cultured material. Phycologia. 2014;53:293–304.

Matsuzaki R, Kawai-Toyooka H, Hara Y, et al. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae) Phycologia. 2015;54:491–502.

Muramoto K, Nakada T, Shitara T, et al. Re-examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al, comb. nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material. Eur J Phycol. 2010;45:27–37.

Novis PM. New records of snow algae for New Zealand, from Mt Philistine, Arthur's Pass National Park. New Zeal J Bot. 2002a;40:297–312.

Novis PM. Ecology of the snow alga Chlainomonas kolii (Chlamydomonadales, Chlorophya) in New Zealand. Phycologia. 2002b;41:280–92.

Novis PM, Hoham RW, Beer T, et al. Two snow species of the quadriflagellate green alga Chlainomonas (Chlorophyta, Volvocales): Ultrastructure and phylogenetic position within the Chloromonas clade. J Phycol. 2008;44:1001–12. PubMed

Nylander JAA. MrModeltest 2.3. Distributed by the author. Evolutionary Biology Centre, Uppsala University; Uppsala, Sweden: 2004.

Raymond JA. The ice-binding proteins of a snow alga, Chloromonas brevispina: probable acquisition by horizontal gene transfer. Extremophiles. 2014;18:987–94. PubMed

Remias D. Cell structure and physiology of alpine snow and ice algae. In: Lütz C, editor. Plants in alpine regions. Cell physiology of adaption and survival strategies. Wien: Springer; 2012. pp. 175–86.

Remias D, Karsten U, Lütz C, et al. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma. 2010;243:73–86. PubMed

Remias D, Lütz-Meindl U, Lütz C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol. 2005;40:259–68.

Remias D, Lütz C. Characterisation of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach. Algological Stud. 2007;124:85–94.

Remias D, Wastian H, Lütz C, et al. Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarct Sci. 2013;25:648–56.

Řezanka T, Nedbalová L, Kolouchová I, et al. LC–MS/APCI identification of glucoside esters and diesters of astaxanthin from the snow alga Chlamydomonas nivalis including their optical stereoisomers. Phytochemistry. 2013;88:34–42. PubMed

Řezanka T, Nedbalová L, Procházková L, et al. Lipidomic profiling of snow algae by ESI-MS and silver-LC/APCI-MS. Phytochemistry. 2014;100:34–42. PubMed

Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–74. PubMed

Spijkerman E, Wacker A, Weithoff G, et al. Elemental and fatty acid composition of snow algae. Front Microbiol. 2012;3:380. PubMed PMC

Stibal M, Elster J, Šabacká M, et al. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol. 2007;59:265–73. PubMed

Swofford DL. PAUP*4.0b10. Phylogenetic Analysis Using Parsimony (*and Other Methods) Sunderland: Sinauer Associates; 2002.

Uetake J, Tanaka S, Hara K, et al. Novel biogenic aggregation of moss gemmae on a disappearing African glacier. PLoS One. 2014;9:e112510. PubMed PMC

Varshney P, Mikulic P, Vonshak A, et al. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technol. 2015;184:363–72. PubMed

Verbruggen H, Ashworth M, LoDuca ST, et al. A multi-locus time-calibrated phylogeny of the siphonous green algae. Mol Phylogenet Evol. 2009;50:642–53. PubMed

Zwickl DJ. Ph.D. Thesis. University of Texas at Austin; 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Spatial and Temporal Variations in Pigment and Species Compositions of Snow Algae on Mt. Tateyama in Toyama Prefecture, Japan

. 2021 ; 12 () : 689119. [epub] 20210705

Cysts of the Snow Alga Chloromonas krienitzii (Chlorophyceae) Show Increased Tolerance to Ultraviolet Radiation and Elevated Visible Light

. 2020 ; 11 () : 617250. [epub] 20201217

Evaluating High-Throughput Sequencing Data of Microalgae Living in Melting Snow: Improvements and Limitations1

. 2019 Oct 30 ; 19 (2) : 115-131. [epub] 20190801

Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), Causing Orange Snow Blooms at Different Light Conditions

. 2019 Oct 10 ; 7 (10) : . [epub] 20191010

Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow

. 2019 Jun 01 ; 95 (6) : .

Ecophysiological and morphological comparison of two populations of Chlainomonas sp. (Chlorophyta) causing red snow on ice-covered lakes in the High Tatras and Austrian Alps

. 2018 ; 53 (2) : 230-243. [epub] 20180404

Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia)

. 2018 Mar 31 ; 18 (1) : 1-18. [epub] 20170926

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...