Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
Grantová podpora
I 1951
Austrian Science Fund FWF - Austria
P 24242
Austrian Science Fund FWF - Austria
PubMed
26884467
PubMed Central
PMC4815433
DOI
10.1093/femsec/fiw030
PII: fiw030
Knihovny.cz E-zdroje
- Klíčová slova
- astaxanthin, cryoflora, snow algae, spores, ultrastructure,
- MeSH
- biologické pigmenty fyziologie MeSH
- buněčná stěna chemie ultrastruktura MeSH
- Chlamydomonas fyziologie ultrastruktura MeSH
- ekosystém MeSH
- fotosyntéza fyziologie MeSH
- hmotnostní spektrometrie MeSH
- nízká teplota MeSH
- roční období MeSH
- sníh mikrobiologie MeSH
- světlo MeSH
- xanthofyly fyziologie MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- astaxanthine MeSH Prohlížeč
- biologické pigmenty MeSH
- xanthofyly MeSH
Red snow is a well-known phenomenon caused by microalgae thriving in alpine and polar regions during the melting season. The ecology and biodiversity of these organisms, which are adapted to low temperatures, high irradiance and freeze-thaw events, are still poorly understood. We compared two different snow habitats containing two different green algal genera in the European Alps, namely algae blooming in seasonal rock-based snowfields (Chlamydomonas nivalis) and algae dominating waterlogged snow bedded over ice (Chlainomonassp.). Despite the morphological similarity of the red spores found at the snow surface, we found differences in intracellular organization investigated by light and transmission electron microscopy and in secondary pigments investigated by chromatographic analysis in combination with mass spectrometry. Spores ofChlainomonassp. show clear differences fromChlamydomonas nivalisin cell wall arrangement and plastid organization. Active photosynthesis at ambient temperatures indicates a high physiological activity, despite no cell division being present. Lipid bodies containing the carotenoid astaxanthin, which produces the red color, dominate cells of both species, but are modified differently. While inChlainomonassp. astaxanthin is mainly esterified with two fatty acids and is more apolar, inChamydomonas nivalis, in contrast, less apolar monoesters prevail.
Charles University Prague Faculty of Science Department of Botany Prague Czech Republic
University of Applied Sciences Upper Austria Wels Austria
University of Innsbruck Institute of Botany Austria
University of Innsbruck Institute of Pharmacy Pharmacognosy Austria
Zobrazit více v PubMed
Buchner O, Lütz C, Holzinger A. Design and construction of a new temperature controlled chamber for light- and confocal microscopy under monitored conditions: biological application for plant samples. J Microsc. 2007;225:183–91. PubMed
Cepák V, Lukavský J. Cryoseston of the Pirin Mountains, Bulgaria. Acta Bot Croat. 2013;72:257–68.
Duval B, Duval E, Hoham RW. Snow algae of the Sierra Nevada, Spain, and High Atlas mountains of Morocco. Internatl Microbiol. 1999;2:39–42. PubMed
Ettl H. Süßwasserflora von Mitteleuropa. Band 9: Chloropyta I. Phytomonadina. Stuttgart, New York: Fischer; 1983.
Hoham RW. New findings in the life history of the snow alga, Chlainomonas rubra (Stein et Brooke) comb. nov. (Chlorophyta, Volvocales) Syesis. 1974a;7:239–47.
Hoham RW. Chlainomonas kolii (Hardy et Curl) comb. nov. (Chlorophyta, Volvocales), A revision of the snow alga, Trachelomonas kolii Hardy et Curl (Euglenophyta, Euglenales) J Phycol. 1974b;10:392–96.
Hoham RW, Berman JD, Rogers HS, et al. Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia. 2006;45:319–30.
Hoham RW, Duval B. Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG, Pomeroy JW, Walker DA, et al., editors. Snow Ecology. New York: Cambridge University Press; 2001. pp. 168–228.
Hoham RW, Filbin RW, Frey FM, et al. The optimum pH of the green snow algae, Chloromonas tughillensis and Chloromonas chanangoensis, from Upstate New York. Arct Antarct Alp Res. 2007;39:65–73.
Holzinger A, Roleda MY, Lütz C. The vegetative arctic green alga Zygnema is insensitive to experimental UV exposure. Micron. 2009;40:831–8. PubMed
Kawecka B. Biology and ecology of snow algae. 2. Formation of aplanospores in Chlamyomonasnivalis (Bauer) Wille (Chlorophyta, Volvocales) Acta Hydrobiol. 1981;23:211–15.
Kol E. Kryobiologie. Biologie und Limnologie des Schnees und Eises. I. Kryovegetation. In: Elster HJ, Ohle W, editors. Die Binnengewässer, Band XXIV. Stuttgart: Schweizerbart'sche Verlagsbuchhandlung; 1968.
Kol E. Vom roten Schnee der Tiroler Alpen. Ann Hist Natur Mus Nat Hung. 1970;62:129–36.
Komárek J, Nedbalová L. Green cryosestic algae. In: Seckbach J, editor. Cellular origin, life in extreme habitats and astrobiology, volume 11, Algae and cyanobacteria in extreme environments, part 4, Phototrophs in cold environments. Dordrecht: Springer; 2008. pp. 323–44.
Kvíderová J. Research on cryosestic communities in Svalbard: the snow algae of temporary snowfields in Petuniabukta, Central Svalbard. Czech Polar Rep. 2012;2:8–19.
Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res. 2010;106:155–77. PubMed
Leya T. Snow Algae: Adaptation Strategies to Survive on Snow and Ice. In: Seckbach J, Oren A, Stan-Lotter H, editors. Cellular origin, life in extreme habitats and astrobiology, volume 27, Polyextremophiles: Life under multiple forms of stress. Dordrecht: Springer; 2013. pp. 401–23.
Li Y, Sommerfeld M, Chen F, et al. Consumption of oxygen by astaxanthin biosynthesis: A protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae) J Plant Physiol. 2008;165:1783–97. PubMed
Lukeš M, Procházková L, Shmidt V, et al. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae) FEMS Microbiol Ecol. 2014;89:303–15. PubMed
Lutz S, Anesio AM, Edwards A, et al. Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol. 2015;6:307. PubMed PMC
Lütz-Meindl U, Lütz C. Analysis of element accumulation in cell wall attached intracellular particles of snow algae by EELS and ESI. Micron. 2006;37:452–8. PubMed
Matsuzaki R, Hara Y, Nozaki H. A taxonomic study of snow Chloromonas species (Volvocales, Chlorophyceae) based on light and electron microscopy and molecular analysis of cultured material. Phycologia. 2014;53:293–304.
Matsuzaki R, Kawai-Toyooka H, Hara Y, et al. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae) Phycologia. 2015;54:491–502.
Muramoto K, Nakada T, Shitara T, et al. Re-examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al, comb. nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material. Eur J Phycol. 2010;45:27–37.
Novis PM. New records of snow algae for New Zealand, from Mt Philistine, Arthur's Pass National Park. New Zeal J Bot. 2002a;40:297–312.
Novis PM. Ecology of the snow alga Chlainomonas kolii (Chlamydomonadales, Chlorophya) in New Zealand. Phycologia. 2002b;41:280–92.
Novis PM, Hoham RW, Beer T, et al. Two snow species of the quadriflagellate green alga Chlainomonas (Chlorophyta, Volvocales): Ultrastructure and phylogenetic position within the Chloromonas clade. J Phycol. 2008;44:1001–12. PubMed
Nylander JAA. MrModeltest 2.3. Distributed by the author. Evolutionary Biology Centre, Uppsala University; Uppsala, Sweden: 2004.
Raymond JA. The ice-binding proteins of a snow alga, Chloromonas brevispina: probable acquisition by horizontal gene transfer. Extremophiles. 2014;18:987–94. PubMed
Remias D. Cell structure and physiology of alpine snow and ice algae. In: Lütz C, editor. Plants in alpine regions. Cell physiology of adaption and survival strategies. Wien: Springer; 2012. pp. 175–86.
Remias D, Karsten U, Lütz C, et al. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma. 2010;243:73–86. PubMed
Remias D, Lütz-Meindl U, Lütz C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol. 2005;40:259–68.
Remias D, Lütz C. Characterisation of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach. Algological Stud. 2007;124:85–94.
Remias D, Wastian H, Lütz C, et al. Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarct Sci. 2013;25:648–56.
Řezanka T, Nedbalová L, Kolouchová I, et al. LC–MS/APCI identification of glucoside esters and diesters of astaxanthin from the snow alga Chlamydomonas nivalis including their optical stereoisomers. Phytochemistry. 2013;88:34–42. PubMed
Řezanka T, Nedbalová L, Procházková L, et al. Lipidomic profiling of snow algae by ESI-MS and silver-LC/APCI-MS. Phytochemistry. 2014;100:34–42. PubMed
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–74. PubMed
Spijkerman E, Wacker A, Weithoff G, et al. Elemental and fatty acid composition of snow algae. Front Microbiol. 2012;3:380. PubMed PMC
Stibal M, Elster J, Šabacká M, et al. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol. 2007;59:265–73. PubMed
Swofford DL. PAUP*4.0b10. Phylogenetic Analysis Using Parsimony (*and Other Methods) Sunderland: Sinauer Associates; 2002.
Uetake J, Tanaka S, Hara K, et al. Novel biogenic aggregation of moss gemmae on a disappearing African glacier. PLoS One. 2014;9:e112510. PubMed PMC
Varshney P, Mikulic P, Vonshak A, et al. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technol. 2015;184:363–72. PubMed
Verbruggen H, Ashworth M, LoDuca ST, et al. A multi-locus time-calibrated phylogeny of the siphonous green algae. Mol Phylogenet Evol. 2009;50:642–53. PubMed
Zwickl DJ. Ph.D. Thesis. University of Texas at Austin; 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion.