On growth and formins
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26910482
PubMed Central
PMC4883901
DOI
10.1080/15592324.2016.1155017
Knihovny.cz E-zdroje
- Klíčová slova
- Actin, FH2 proteins, cell growth, epidermal pavement cells, formins, microtubules,
- MeSH
- Arabidopsis růst a vývoj metabolismus ultrastruktura MeSH
- biologické modely MeSH
- cytoskelet metabolismus fyziologie ultrastruktura MeSH
- forminy MeSH
- membránové proteiny genetika metabolismus fyziologie MeSH
- mikrotubuly metabolismus fyziologie ultrastruktura MeSH
- multigenová rodina MeSH
- proteiny huseníčku genetika metabolismus fyziologie MeSH
- rostlinné buňky metabolismus ultrastruktura MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AFH1 protein, Arabidopsis MeSH Prohlížeč
- forminy MeSH
- membránové proteiny MeSH
- proteiny huseníčku MeSH
Development of the plant aerial organs epidermis involves a complex interplay of cytoskeletal rearrangements, membrane trafficking-dependent cell surface expansion, and intra- and intercellular signaling, resulting in a pattern of perfectly interlocking pavement cells. While recent detailed in vivo observations convincingly identify microtubules rather than actin as key players at the early stages of development of pavement cell lobes in Arabidopsis, mutations affecting the actin-nucleating ARP2/3 complex are long known to reduce pavement cell lobing, suggesting a central role for actin. We have now shown that functional impairment of the Arabidopsis formin FH1 enhances both microtubule dynamics and pavement cell lobing. While formins are best known for their ability to nucleate actin, many members of this old gene family now emerge as direct or indirect regulators of the microtubule cytoskeleton, and our findings suggest that they might co-ordinate action of the two cytoskeletal systems during pavement cell morphogenesis.
Zobrazit více v PubMed
Thompson DW. On growth and form 2nd rev. ed. Cambridge: University Press, New York: The Macmillan Company, 1945, 1116 p; https://archive.org/details/ongrowthform00thom
Ivakov A, Persson S. Plant cell shape: modulators and measurements. Front Plant Sci 2013; 4:439; PMID:24312104; http://dx.doi.org/10.3389/fpls.2013.00439 PubMed DOI PMC
Jacques E, Verbelen JP, Vissenberg K. Review on shape formation in epidermal pavement cells of the Arabidopsis leaf. Funct Plant Biol 2014; 41:914-621; PMID:26047974; http://dx.doi.org/10.1071/FP13338 PubMed DOI
Panteris E, Galatis B. The morphogenesis of lobed plant cells in the mesophyll and epidermis: organization and distinct roles of cortical microtubules and actin filaments. New Phytol 2005; 167:721-32; PMID:16101909; http://dx.doi.org/10.1111/j.1469-8137.2005.01464.x PubMed DOI
Mathur J. The ARP2/3 complex: giving plant cells a leading edge. Bioessays 2005; 27:377-87; PMID:15770684; http://dx.doi.org/10.1002/bies.20206 PubMed DOI
Ojangu EL, Tanner K, Pata P, Järve K, Holweg CL, Truve E, Paves H. Myosins XI-K, XI-1, and XI-2 are required for development of pavement cells, trichomes, and stigmatic papillae in Arabidopsis. BMC Plant Biol 2012; 12:81; PMID:22672737; http://dx.doi.org/10.1186/1471-2229-12-81 PubMed DOI PMC
Wang X, Zhu L, Liu B, Wang C, Jin L, Zhao Q, Yuan M. Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules. Plant Cell 2007; 19:877-89; PMID:17337629; http://dx.doi.org/10.1105/tpc.106.048579 PubMed DOI PMC
Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO. The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 2007; 19:2763-75; PMID:17873093; http://dx.doi.org/10.1105/tpc.107.053777 PubMed DOI PMC
Falbel TG, Koch LM, Nadeau JA, Segui-Simarro JM, Sack FD, Bednarek SY. SCD1 is required for cytokinesis and polarized cell expansion in Arabidopsis thaliana. Development 2003; 130:4011-24; PMID:12874123; http://dx.doi.org/10.1242/dev.00619 PubMed DOI
Zhang L, Zhang H, Liu P, Hao H, Jin JB, Lin J. Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS One 2011; 6:e26129; PMID:22022536; http://dx.doi.org/10.1371/journal.pone.0026129 Epub 2011 Oct 11 PubMed DOI PMC
Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 2005; 120:687-700; PMID:15766531; http://dx.doi.org/10.1016/j.cell.2004.12.026 PubMed DOI
Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S. A novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol 2007; 17:947-52; PMID:17493810; http://dx.doi.org/10.1016/j.cub.2007.04.038 PubMed DOI
Fu Y, Xu T, Wen M, Yang Z. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 2009; 19:1827-32; PMID:19818614; http://dx.doi.org/10.1016/j.cub.2009.08.052 PubMed DOI PMC
Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 2010; 143:99-110; PMID:20887895; http://dx.doi.org/10.1016/j.cell.2010.09.003 PubMed DOI PMC
Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z. ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 2012; 10:e1001299; PMID:22509133; http://dx.doi.org/10.1371/journal.pbio.1001299 PubMed DOI PMC
Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H, Zhou Z, Chen X, De Rycke R, Rakusová H, et al.. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 2014; 343:1025-8; PMID:24578577; http://dx.doi.org/10.1126/science.1245125 PubMed DOI PMC
Zhiponova MK, Vanhoutte I, Boudolf V, Betti C, Dhondt S, Coppens F, Mylle E, Maes S, González-García MP, Caño-Delgado AI, et al.. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytol 2013; 197:490-502; PMID:23253334; http://dx.doi.org/10.1111/nph.12036 PubMed DOI
Han B, Chen L, Wang J, Wu Z, Yan L, Hou S. Constitutive Expresser of Pathogenesis Related Genes 1 is required for pavement cell morphogenesis in Arabidopsis. PloS One 2015; 10:e0133249; PMID:26193674; http://dx.doi.org/10.1371/journal.pone.0133249 PubMed DOI PMC
Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 2015; 112:2275-80; PMID:25646447; http://dx.doi.org/10.1073/pnas.1500365112 PubMed DOI PMC
Enders TA, Oh S, Yang Z, Montgomery BL, Strader LC. Genome sequencing of Arabidopsis abp1-5 reveals second-site mutations that may affect phenotypes. Plant Cell 2015; 27:1820-186; PMID:26106149; http://dx.doi.org/10.1105/tpc.15.00214 PubMed DOI PMC
Žárský V, Cvrčková F, Potocký M, Hála M. Exocytosis and cell polarity in plants - exocyst and recycling domains. New Phytol 2009; 183:255-72; PMID:19496948; http://dx.doi.org/10.1111/j.1469-8137.2009.02880.x PubMed DOI
Armour WJ, Barton DA, Law AML, Overall RL. Differential growth in periclinal and anticlinal walls during lobe formation in Arabidopsis cotyledon pavement cells. Plant Cell 2015; 27:2484-500; PMID:26296967; http://dx.doi.org/10.1105/tpc.114.126664 PubMed DOI PMC
Zhang C, Mallery EL, Szymanski DB. ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. Front Plant Sci 2013; 4:238; PMID:23874346; http://dx.doi.org/10.3389/fpls.2013.00238 PubMed DOI PMC
Sampathkumar A, Lindeboom JJ, Debolt S, Gutierrez R, Ehrhardt DW, Ketelaar T, Persson S. Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell 2011; 23:2302-13; PMID:21693695; http://dx.doi.org/10.1105/tpc.111.087940 PubMed DOI PMC
Rosero A, Oulehlová D, Stillerová L, Schiebertová P, Grunt M, Žárský V, Cvrčková F. Arabidopsis FH1 formin affects cotyledon pavement cell shape by modulating cytoskeleton dynamics. Plant Cell Physiol in press; PMID:26738547; http://dx.doi.org/10.1093/pcp/pcv209 PubMed DOI
Bartolini F, Gundersen GG. Formins and microtubules. Biochim Biophys Acta 2010; 1803:164-73; PMID:19631698; http://dx.doi.org/10.1016/j.bbamcr.2009.07.006 PubMed DOI PMC
Cvrčková F, Oulehlová D, Žárský V. Formins: linking cytoskeleton and endomembranes in plant cells. Int J Mol Sci 2015; 16:1-18; PMID:25546384; http://dx.doi.org/10.3390/ijms16010001 PubMed DOI PMC
Rizvi SA, Neidt EM, Cui J, Feiger Z, Skau CT, Gardel ML, Kozmin SA, Kovar DR. Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. Chem Biol 2009; 16:1158-68; PMID:19942139; http://dx.doi.org/10.1016/j.chembiol.2009.10.006 PubMed DOI PMC
Cao L, Henty-Ridilla JL, Blanchoin L, Staiger CJ. Profilin-dependent nucleation and assembly of actin filaments controls cell elongation in Arabidopsis. Plant Physiol 2016; 170:220-323; PMID:2657459; http://dx.doi.org/10.1104/pp.15.01321 PubMed DOI PMC
Martinière A, Gayral P, Hawes C, Runions J. Building bridges: formin1 of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton. Plant J 2011; 66:354-65; PMID:21241388; http://dx.doi.org/10.1111/j.1365-313X.2011.04497.x PubMed DOI
Transmembrane formins as active cargoes of membrane trafficking