Expression of a second open reading frame present in the genome of tick-borne encephalitis virus strain Neudoerfl is not detectable in infected cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26924586
DOI
10.1007/s11262-015-1273-y
PII: 10.1007/s11262-015-1273-y
Knihovny.cz E-zdroje
- Klíčová slova
- Immunoblotting, Immunofluorescence, TBEV, TuORF, uORF,
- MeSH
- biosyntéza peptidů genetika imunologie MeSH
- buněčné linie MeSH
- fylogeneze MeSH
- genom virový * MeSH
- glioblastom virologie MeSH
- klíště virologie MeSH
- klíšťová encefalitida virologie MeSH
- lidé MeSH
- meduloblastom virologie MeSH
- mutace MeSH
- neuroblastom virologie MeSH
- otevřené čtecí rámce * MeSH
- viry klíšťové encefalitidy genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A short upstream open reading frame (uORF) was recently identified in the 5' untranslated region of some tick-borne encephalitis virus (TBEV) strains. However, it is not known if the peptide encoded by TBEV uORF (TuORF) is expressed in infected cells. Here we show that TuORF forms three phylogenetically separated clades which are typical of European, Siberian, and Far-Eastern TBEV subtypes. Analysis of selection pressure acting on the TuORF area showed that it is under positive selection pressure. Theoretically, TuORF may code for a short hydrophobic peptide embedded in a biological membrane. However, expression of TuORF was detectable neither by immunoblotting in tick and mammalian cell lines infected with TBEV nor by immunofluorescence in TBEV-infected mammalian cell lines. These results support the idea that TuORF is not expressed in TBEV-infected cell or expressed in undetectably low concentrations. Therefore we can assume that TuORF has either minor or no biological role in the TBEV life cycle.
The Pirbright Institute Ash Road Pirbright Woking Surrey GU24 0NF UK
Veterinary Research Institute Hudcova 296 70 621 00 Brno Czech Republic
Zobrazit více v PubMed
Virology. 2008 Nov 25;381(2):268-76 PubMed
J Virol. 2009 Jan;83(2):993-1008 PubMed
J Gen Virol. 2012 Sep;93(Pt 9):1959-64 PubMed
J Gen Virol. 1999 Jan;80 ( Pt 1):179-85 PubMed
Nat Methods. 2011 Dec 25;9(2):173-5 PubMed
Novartis Found Symp. 2006;277:136-45; discussion 145-8, 251-3 PubMed
Nucleic Acids Res. 2011 Sep 1;39(16):7034-48 PubMed
Virology. 2008 Aug 1;377(2):419-30 PubMed
Virus Res. 1999 Mar;60(1):67-79 PubMed
Travel Med Infect Dis. 2010 Jul;8(4):223-32 PubMed
Mol Biol Evol. 2013 Dec;30(12):2725-9 PubMed
Cell. 1986 Jan 31;44(2):283-92 PubMed
Virol J. 2009 Feb 05;6:14 PubMed
Virology. 2007 Sep 15;366(1):8-15 PubMed
Bioinformatics. 1998;14(10):892-3 PubMed
Trends Parasitol. 2007 Sep;23(9):450-7 PubMed
Adv Virus Res. 2003;61:317-71 PubMed
J Gen Virol. 2012 Jul;93(Pt 7):1385-409 PubMed
J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed
J Gen Virol. 2010 May;91(Pt 5):1218-23 PubMed
Nature. 1984 Mar 15-21;308(5956):241-6 PubMed
Vector Borne Zoonotic Dis. 2010 May;10(4):365-75 PubMed
Curr Top Microbiol Immunol. 2010;338:15-34 PubMed
Virol J. 2012 Nov 22;9:283 PubMed
Viruses. 2011 Sep;3(9):1739-56 PubMed
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W23-8 PubMed
Nat Protoc. 2006;1(1):16-22 PubMed
J Gen Virol. 2009 Jul;90(Pt 7):1649-58 PubMed
Int J Mol Med. 2009 Apr;23(4):509-12 PubMed
J Virol. 2010 Feb;84(3):1641-7 PubMed
Mol Biol Evol. 1986 Sep;3(5):418-26 PubMed
Antiviral Res. 2003 Jan;57(1-2):129-46 PubMed
Microbes Infect. 2012 Sep;14(11):930-40 PubMed
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8 PubMed
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W597-603 PubMed
Novartis Found Symp. 2006;277:23-39; discussion 40, 71-3, 251-3 PubMed
Bioinformatics. 2007 Nov 1;23(21):2947-8 PubMed
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed
Virology. 2007 May 25;362(1):75-84 PubMed
Virus Res. 2006 Jul;119(1):52-62 PubMed
Mol Biol Evol. 2010 Aug;27(8):1759-67 PubMed