Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis

. 2016 Mar 17 ; 6 () : 23310. [epub] 20160317

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26984671

Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience.

Zobrazit více v PubMed

Bari R. & Jones J. D. G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488 (2009). PubMed

Grant M. R. & Jones J. D. Hormone (dis)harmony moulds plant health and disease. Science 324, 750–752 (2009). PubMed

Pieterse C. M. J., Leon-Reyes A., van der Ent S. & van Wees S. C. M. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316 (2009). PubMed

Pieterse C. M. J., van der Does D., Zamioudis C., Leon-Reyes A. & van Wees S. C. M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012). PubMed

Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–449 (2006). PubMed

Hwang I., Sheen J. & Müller B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 63, 353–380 (2012). PubMed

Walters D. R., McRoberts W. K. & Fitt B. D. Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biol. Rev. Camb. Philos. Soc. 83, 79–102 (2008). PubMed

Balibrea Lara M. E. et al. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16, 1276–1287 (2004). PubMed PMC

Ehneß R. & Roitsch T. Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. Plant J. 11, 539–548 (1997). PubMed

Choi J. et al. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev. Cell 19, 284–295 (2010). PubMed

Argueso C. T. et al. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet. 8, e1002448 (2012). PubMed PMC

Großkinsky D. K. et al. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol. 157, 815–830 (2011). PubMed PMC

Jiang C. J. et al. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol. Plant Microbe Interact. 26, 287–296 (2013). PubMed

Großkinsky D. K., van der Graaff E. & Roitsch T. Phytoalexin transgenics in crop protection – Fairy tale with a happy end? Plant Sci. 195, 54–70 (2012). PubMed

Großkinsky D. K., van der Graaff E. & Roitsch T. Abscisic acid-cytokinin antagonism modulates resistance against Pseudomonas syringae in tobacco. Phytopathology 104, 1283–1288 (2014). PubMed

Ko K.-W. et al. Effects of cytokinin on production of diterpenoid phytoalexins in rice. J. Pestic. Sci. 35, 412–418 (2010).

Berg G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11–18 (2009). PubMed

Whipps J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001). PubMed

Haas D. & Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319 (2005). PubMed

van Wees S. C., van der Ent S. & Pieterse C. M. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11, 443–448 (2008). PubMed

Arkhipova T. N., Veselov S. U., Melentiev A. I., Martynenko E. V. & Kudoyarova G. R. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272, 201–209 (2005).

Ortíz-Castro R., Valencia-Cantero E. & López-Bucio J. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal. Behav. 3, 263–265 (2008). PubMed PMC

Liu F., Xing S., Ma H., Du Z. & Ma B. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl. Microbiol. Biotechnol. 97, 9155–9164 (2013). PubMed

García de Salamone I. E., Hynes R. K. & Nelson L. M. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can. J. Microbiol. 47, 404–411 (2001). PubMed

Pallai R., Hynes K. H., Verma B. & Nelson L. M. Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6–8 under gnotobiotic conditions. Can. J. Microbiol. 58, 170–178 (2012). PubMed

Katagiri F., Thilmony R. & He S. Y. The Arabidopsis thaliana-Pseudomonas syringae interaction. The Arabidopsis Book 1, e0039 (2002). PubMed PMC

Naseem M. et al. Integrated systems view on networking by hormones in Arabidopsis immunity reveals multiple crosstalk for cytokinin. Plant Cell 24, 1793–1814 (2012). PubMed PMC

Großkinsky D. K., Edelsbrunner K., Pfeifhofer H., van der Graaff E. & Roitsch T. Cis- and trans-zeatin differentially modulate plant immunity. Plant Signal. Behav. 8, e24798 (2013). PubMed PMC

Novák O., Hauserová E., Amakorová P., Doležal K. & Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69, 2214–2224 (2008). PubMed

Koenig R. L., Morris R. O. & Polacco J. C. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J. Bacteriol. 184, 1832–1842 (2002). PubMed PMC

Ryu J. et al. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 16, 1622–1628 (2006).

Podlešáková K. et al. Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic bradyrhizobia and Aeschynomene legumes. Mol. Plant Microbe Interact. 10, 1232–1238 (2013). PubMed

Winter D. et al. An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2, e718 (2007). PubMed PMC

Compant S., Duffy B., Nowak J., Clément C. & Barka E. A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951–4959 (2005). PubMed PMC

Wu C. H., Bernard S. M., Andersen G. L. & Chen W. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb. Biotechnol. 2, 428–440 (2009). PubMed PMC

Chalupowicz L., Barash I., Panijel M., Sessa G. & Manulis-Sasson S. Regulatory interactions between quorum-sensing, Auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness of Pantoea agglomerans pv. gypsophilae. Mol. Plant Microbe Interact. 22, 849–856 (2009). PubMed

Depuydt S. et al. An integrated genomics approach to define niche establishment by Rhodococcus fascians. Plant Physiol. 149, 1366–1386 (2009). PubMed PMC

Higuchi M. et al. In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. USA 101, 8821–8826 (2004). PubMed PMC

Delaney T. P. et al. A central role of salicylic acid in plant disease resistance. Science 266, 1247–1250 (1994). PubMed

Nawrath C. & Métraux J.-P. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 1393–1404 (1999). PubMed PMC

Cao H., Bowling S. A., Gordon A. S. & Dong X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6, 1583–1592 (1994). PubMed PMC

Berger S., Bell E. & Mullet J. E. Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol. 111, 525–531 (1996). PubMed PMC

Fernández-Calvo P. et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23, 701–715 (2011). PubMed PMC

Guzmán P. & Ecker J. R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513–523 (1990). PubMed PMC

van Peer R., Niemann G. J. & Schippers B. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81, 1508–1512 (1991).

Ongena M. et al. Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathol. 49, 523–530 (2000).

Glazebrook J. & Ausubel F. M. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interaction with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91, 8955–8959 (1994). PubMed PMC

Glawischnig E., Hansen B. G., Olsen C. E. & Halkier B. A. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 8245–8250 (2004). PubMed PMC

Glawischnig E. Camalexin. Phytochemistry 68, 401–406 (2007). PubMed

Rico A., McCraw S. L. & Preston G. M. The metabolic interface between Pseudomonas syringae and plant cells. Curr. Opin. Microbiol. 14, 31–38 (2011). PubMed

Gan S. & Amasino R. M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986–1988 (1995). PubMed

Kuderová A. et al. Effects of conditional IPT-dependent cytokinin overproduction on root architecture of Arabidopsis seedlings. Plant Cell Physiol. 49, 570–582 (2008). PubMed

Li X. G. et al. Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene 450, 109–120 (2010). PubMed

Akiyoshi D. E. et al. Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Natl. Acad. Sci. USA 80, 407–411 (1983). PubMed PMC

Akiyoshi D. E., Klee H., Amasino R. M., Nester E. W. & Gordon M. P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA 81, 5994–5998 (1984). PubMed PMC

Hann D. R. et al. The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytol. 201, 585–598 (2014). PubMed

Rivero R. M. et al. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. USA 104, 19631–19636 (2007). PubMed PMC

Großkinsky D. K., Koffler B. E., Roitsch T., Maier R. & Zechmann B. Compartment specific antioxidative defense in Arabidopsis against virulent and avirulent Pseudomonas syringae. Phytopathology 102, 662–673 (2012). PubMed PMC

Bloemberg G. V., Wijfjes A. H. M., Lamers G. E. M., Stuurman N. & Lugtenberg B. J. J. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol. Plant Microbe Interact. 13, 1170–1176 (2000). PubMed

Zipfel C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767 (2004). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...