Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26984671
PubMed Central
PMC4794740
DOI
10.1038/srep23310
PII: srep23310
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis mikrobiologie MeSH
- cytokininy analýza biosyntéza farmakologie MeSH
- kyselina salicylová farmakologie MeSH
- listy rostlin mikrobiologie MeSH
- nemoci rostlin mikrobiologie MeSH
- Pseudomonas fluorescens metabolismus MeSH
- Pseudomonas syringae účinky léků růst a vývoj patogenita MeSH
- regulátory růstu rostlin farmakologie MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- kyselina salicylová MeSH
- regulátory růstu rostlin MeSH
Plant beneficial microbes mediate biocontrol of diseases by interfering with pathogens or via strengthening the host. Although phytohormones, including cytokinins, are known to regulate plant development and physiology as well as plant immunity, their production by microorganisms has not been considered as a biocontrol mechanism. Here we identify the ability of Pseudomonas fluorescens G20-18 to efficiently control P. syringae infection in Arabidopsis, allowing maintenance of tissue integrity and ultimately biomass yield. Microbial cytokinin production was identified as a key determinant for this biocontrol effect on the hemibiotrophic bacterial pathogen. While cytokinin-deficient loss-of-function mutants of G20-18 exhibit impaired biocontrol, functional complementation with cytokinin biosynthetic genes restores cytokinin-mediated biocontrol, which is correlated with differential cytokinin levels in planta. Arabidopsis mutant analyses revealed the necessity of functional plant cytokinin perception and salicylic acid-dependent defence signalling for this biocontrol mechanism. These results demonstrate microbial cytokinin production as a novel microbe-based, hormone-mediated concept of biocontrol. This mechanism provides a basis to potentially develop novel, integrated plant protection strategies combining promotion of growth, a favourable physiological status and activation of fine-tuned direct defence and abiotic stress resilience.
Zobrazit více v PubMed
Bari R. & Jones J. D. G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488 (2009). PubMed
Grant M. R. & Jones J. D. Hormone (dis)harmony moulds plant health and disease. Science 324, 750–752 (2009). PubMed
Pieterse C. M. J., Leon-Reyes A., van der Ent S. & van Wees S. C. M. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316 (2009). PubMed
Pieterse C. M. J., van der Does D., Zamioudis C., Leon-Reyes A. & van Wees S. C. M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012). PubMed
Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–449 (2006). PubMed
Hwang I., Sheen J. & Müller B. Cytokinin signaling networks. Annu. Rev. Plant Biol. 63, 353–380 (2012). PubMed
Walters D. R., McRoberts W. K. & Fitt B. D. Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biol. Rev. Camb. Philos. Soc. 83, 79–102 (2008). PubMed
Balibrea Lara M. E. et al. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16, 1276–1287 (2004). PubMed PMC
Ehneß R. & Roitsch T. Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. Plant J. 11, 539–548 (1997). PubMed
Choi J. et al. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev. Cell 19, 284–295 (2010). PubMed
Argueso C. T. et al. Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet. 8, e1002448 (2012). PubMed PMC
Großkinsky D. K. et al. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol. 157, 815–830 (2011). PubMed PMC
Jiang C. J. et al. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol. Plant Microbe Interact. 26, 287–296 (2013). PubMed
Großkinsky D. K., van der Graaff E. & Roitsch T. Phytoalexin transgenics in crop protection – Fairy tale with a happy end? Plant Sci. 195, 54–70 (2012). PubMed
Großkinsky D. K., van der Graaff E. & Roitsch T. Abscisic acid-cytokinin antagonism modulates resistance against Pseudomonas syringae in tobacco. Phytopathology 104, 1283–1288 (2014). PubMed
Ko K.-W. et al. Effects of cytokinin on production of diterpenoid phytoalexins in rice. J. Pestic. Sci. 35, 412–418 (2010).
Berg G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11–18 (2009). PubMed
Whipps J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511 (2001). PubMed
Haas D. & Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319 (2005). PubMed
van Wees S. C., van der Ent S. & Pieterse C. M. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11, 443–448 (2008). PubMed
Arkhipova T. N., Veselov S. U., Melentiev A. I., Martynenko E. V. & Kudoyarova G. R. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272, 201–209 (2005).
Ortíz-Castro R., Valencia-Cantero E. & López-Bucio J. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal. Behav. 3, 263–265 (2008). PubMed PMC
Liu F., Xing S., Ma H., Du Z. & Ma B. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl. Microbiol. Biotechnol. 97, 9155–9164 (2013). PubMed
García de Salamone I. E., Hynes R. K. & Nelson L. M. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can. J. Microbiol. 47, 404–411 (2001). PubMed
Pallai R., Hynes K. H., Verma B. & Nelson L. M. Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6–8 under gnotobiotic conditions. Can. J. Microbiol. 58, 170–178 (2012). PubMed
Katagiri F., Thilmony R. & He S. Y. The Arabidopsis thaliana-Pseudomonas syringae interaction. The Arabidopsis Book 1, e0039 (2002). PubMed PMC
Naseem M. et al. Integrated systems view on networking by hormones in Arabidopsis immunity reveals multiple crosstalk for cytokinin. Plant Cell 24, 1793–1814 (2012). PubMed PMC
Großkinsky D. K., Edelsbrunner K., Pfeifhofer H., van der Graaff E. & Roitsch T. Cis- and trans-zeatin differentially modulate plant immunity. Plant Signal. Behav. 8, e24798 (2013). PubMed PMC
Novák O., Hauserová E., Amakorová P., Doležal K. & Strnad M. Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69, 2214–2224 (2008). PubMed
Koenig R. L., Morris R. O. & Polacco J. C. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J. Bacteriol. 184, 1832–1842 (2002). PubMed PMC
Ryu J. et al. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 16, 1622–1628 (2006).
Podlešáková K. et al. Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic bradyrhizobia and Aeschynomene legumes. Mol. Plant Microbe Interact. 10, 1232–1238 (2013). PubMed
Winter D. et al. An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2, e718 (2007). PubMed PMC
Compant S., Duffy B., Nowak J., Clément C. & Barka E. A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951–4959 (2005). PubMed PMC
Wu C. H., Bernard S. M., Andersen G. L. & Chen W. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb. Biotechnol. 2, 428–440 (2009). PubMed PMC
Chalupowicz L., Barash I., Panijel M., Sessa G. & Manulis-Sasson S. Regulatory interactions between quorum-sensing, Auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness of Pantoea agglomerans pv. gypsophilae. Mol. Plant Microbe Interact. 22, 849–856 (2009). PubMed
Depuydt S. et al. An integrated genomics approach to define niche establishment by Rhodococcus fascians. Plant Physiol. 149, 1366–1386 (2009). PubMed PMC
Higuchi M. et al. In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. USA 101, 8821–8826 (2004). PubMed PMC
Delaney T. P. et al. A central role of salicylic acid in plant disease resistance. Science 266, 1247–1250 (1994). PubMed
Nawrath C. & Métraux J.-P. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11, 1393–1404 (1999). PubMed PMC
Cao H., Bowling S. A., Gordon A. S. & Dong X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6, 1583–1592 (1994). PubMed PMC
Berger S., Bell E. & Mullet J. E. Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol. 111, 525–531 (1996). PubMed PMC
Fernández-Calvo P. et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23, 701–715 (2011). PubMed PMC
Guzmán P. & Ecker J. R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513–523 (1990). PubMed PMC
van Peer R., Niemann G. J. & Schippers B. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81, 1508–1512 (1991).
Ongena M. et al. Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathol. 49, 523–530 (2000).
Glazebrook J. & Ausubel F. M. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interaction with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91, 8955–8959 (1994). PubMed PMC
Glawischnig E., Hansen B. G., Olsen C. E. & Halkier B. A. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 8245–8250 (2004). PubMed PMC
Glawischnig E. Camalexin. Phytochemistry 68, 401–406 (2007). PubMed
Rico A., McCraw S. L. & Preston G. M. The metabolic interface between Pseudomonas syringae and plant cells. Curr. Opin. Microbiol. 14, 31–38 (2011). PubMed
Gan S. & Amasino R. M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986–1988 (1995). PubMed
Kuderová A. et al. Effects of conditional IPT-dependent cytokinin overproduction on root architecture of Arabidopsis seedlings. Plant Cell Physiol. 49, 570–582 (2008). PubMed
Li X. G. et al. Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene 450, 109–120 (2010). PubMed
Akiyoshi D. E. et al. Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Natl. Acad. Sci. USA 80, 407–411 (1983). PubMed PMC
Akiyoshi D. E., Klee H., Amasino R. M., Nester E. W. & Gordon M. P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA 81, 5994–5998 (1984). PubMed PMC
Hann D. R. et al. The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytol. 201, 585–598 (2014). PubMed
Rivero R. M. et al. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. USA 104, 19631–19636 (2007). PubMed PMC
Großkinsky D. K., Koffler B. E., Roitsch T., Maier R. & Zechmann B. Compartment specific antioxidative defense in Arabidopsis against virulent and avirulent Pseudomonas syringae. Phytopathology 102, 662–673 (2012). PubMed PMC
Bloemberg G. V., Wijfjes A. H. M., Lamers G. E. M., Stuurman N. & Lugtenberg B. J. J. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol. Plant Microbe Interact. 13, 1170–1176 (2000). PubMed
Zipfel C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767 (2004). PubMed
Biochemical and Structural Aspects of Cytokinin Biosynthesis and Degradation in Bacteria
Role of Cytokinins for Interactions of Plants With Microbial Pathogens and Pest Insects