Plasmolysis: Loss of Turgor and Beyond
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
27135521
PubMed Central
PMC4844282
DOI
10.3390/plants3040583
PII: plants3040583
Knihovny.cz E-resources
- Keywords
- Arabidopsis hypocotyl, GFP-ABD, GFP-MAP4, GFP-TUA6, actin microfilaments, cytoskeleton, deplasmolysis, microtubules, plasmolysis,
- Publication type
- Journal Article MeSH
Plasmolysis is a typical response of plant cells exposed to hyperosmotic stress. The loss of turgor causes the violent detachment of the living protoplast from the cell wall. The plasmolytic process is mainly driven by the vacuole. Plasmolysis is reversible (deplasmolysis) and characteristic to living plant cells. Obviously, dramatic structural changes are required to fulfill a plasmolytic cycle. In the present paper, the fate of cortical microtubules and actin microfilaments is documented throughout a plasmolytic cycle in living cells of green fluorescent protein (GFP) tagged Arabidopsis lines. While the microtubules became wavy and highly bundled during plasmolysis, cortical filamentous actin remained in close vicinity to the plasma membrane lining the sites of concave plasmolysis and adjusting readily to the diminished size of the protoplast. During deplasmolysis, cortical microtubule re-organization progressed slowly and required up to 24 h to complete the restoration of the original pre-plasmolytic pattern. Actin microfilaments, again, recovered faster and organelle movement remained intact throughout the whole process. In summary, the hydrostatic skeleton resulting from the osmotic state of the plant vacuole "overrules" the stabilization by cortical cytoskeletal elements.
Cell Imaging and Ultrastructure Research University of Vienna Althanstrasse 14 A 1090 Vienna Austria
CR Hana Palacký University Olomouc Šlechtitelů 586 11 783 71 Olomouc Holice Czech Republic
See more in PubMed
Oparka K.J. Plasmolysis: New insights into an old process. New Phytol. 1994;126:571–591. doi: 10.1111/j.1469-8137.1994.tb02952.x. DOI
Rojas E., Theriot J.A., Huang K.C. Response of Escherichia coli growth rate to osmotic shock. Proc. Natl. Acad. Sci. USA. 2014;111:7807–7812. doi: 10.1073/pnas.1402591111. PubMed DOI PMC
Bitsikas V., Karachaliou M., Gournas C., Diallinas G. Hypertonic conditions trigger transient plasmolysis, growth arrest and blockage of transporter endocytosis in Aspergillus nidulans and Saccharomyces cerevisiae. Mol. Membr. Biol. 2011;28:54–68. doi: 10.3109/09687688.2010.510484. PubMed DOI
Chitcholtan K., Harris E., Yu Y., Harland C., Garrill A. An investigation into plasmolysis in the oomycete Achlya bisexualis reveals that membrane-wall attachment points are sensitive to peptides containing the sequence RGD and that cell wall deposition can occur despite retraction of the protoplast. Can. J. Microbiol. 2012;58:1212–1220. doi: 10.1139/w2012-099. PubMed DOI
Stadelmann E. Plasmolyse und Deplasmolyse. In: Ruhland W., editor. Encyclopedia of Plant Physiology. Volume 2. Springer Verlag; Berlin/Göttingen/Heidelberg, Germany: 1956. pp. 71–115.
Lenné T., Bryant G., Hocart C.H., Huang C.X., Ball M.C. Freeze avoidance: A dehydrating moss gathers no ice. Plant Cell Environ. 2010;33:1731–1741. doi: 10.1111/j.1365-3040.2010.02178.x. PubMed DOI
Küster E. Über Inhaltsverlagerungen in plasmolysierten Zellen. Flora. 1910;100:267–287.
Stadelmann E. Zu Plasmolyse und Deplasmolyse von Allium-Epidermen. Protoplasma. 1964;59:14–68. doi: 10.1007/BF01247855. DOI
Fischer J.M.C., Peterson C.A., Bols N.C. A new fluorescent test for cell vitality using calcofuor white M2R. Stain Technol. 1985;60:69–79. PubMed
Luyet B.J., Gehenio P.M. The survival of moss vitrified in liquid air and its relation to water conten. Biodynamica. 1938;42:1–7.
Strugger S. Praktikum der Zell- und Gewebephysiologie der Pflanze. 2nd ed. Volume 1. Springer Verlag; Berlin/Göttingen/Heidelberg, Germany: 1949. pp. 89–93.
Ruoslahti E., Pierschbacher M.D. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238:491–497. doi: 10.1126/science.2821619. PubMed DOI
Hostetter M.K. RGD-mediated adhesion in fungal pathogens of humans, plants and insects. Curr. Opin. Microbiol. 2000;3:344–348. doi: 10.1016/S1369-5274(00)00101-6. PubMed DOI
Lu B., Chen F., Gong Z.H., Xie H., Zhang J.H., Liang J.S. Intracellular localization of integrin-like protein and its roles in osmotic stress-induced abscisic acid biosynthesis in Zea mays. Protoplasma. 2007;232:35–43. doi: 10.1007/s00709-007-0278-3. PubMed DOI
Ambrose C., Allard J.F., Cytrynbaum E.N., Wasteneys G.O. A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat. Commun. 2011;2:e430. doi: 10.1038/ncomms1444. PubMed DOI PMC
Lei L., Li S., Bashline L., Gu Y. Dissecting the molecular mechanism underlying the intimate relationship between cellulose microfibrils and cortical microtubules. Front. Plant Sci. 2014;5:e90. doi: 10.3389/fpls.2014.00090. PubMed DOI PMC
De Vries H. Eine Methode zur Analyse der Turgorkraft. Jahrb. Wiss. Bot. 1877;14:427–601.
Hecht K. Studien über den Vorgang der Plasmolyse. Beitr. Biol. Pflanz. 1912;11:133–189.
Sitte P. Zellfeinbau bei plasmolyse. Protoplasma. 1963;57:304–333. doi: 10.1007/BF01252062. DOI
Tilney L.G., Cooke T.J., Connelly P.S., Tilney M.S. The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J. Cell Biol. 1991;112:739–747. doi: 10.1083/jcb.112.4.739. PubMed DOI PMC
Pont-Lezica R.F., McNally J.G., Pickard B.G. Wall-to-membrane linkers in onion epidermis: Some hypotheses. Plant Cell Environ. 1993;16:111–123. doi: 10.1111/j.1365-3040.1993.tb00853.x. DOI
Lang I., Barton D.A., Overall R.L. Membrane-wall attachements in plasmolysed plant cells. Protoplasma. 2004;224:231–243. doi: 10.1007/s00709-004-0062-6. PubMed DOI
Cleary A.L. Plasma membrane-cell wall connections: Roles in mitosis and cytokinesis revealed by plasmolysis of Tradescantia virginiana leaf epidermal cells. Protoplasma. 2001;215:21–34. doi: 10.1007/BF01280301. PubMed DOI
Lang-Pauluzzi I., Gunning B.E.S. A plasmolytic cycle: The fate of cytoskeletal elements. Protoplasma. 2000;212:174–185. doi: 10.1007/BF01282918. DOI
Komis G., Quader H., Galatis B., Apostolakos P. Macrotubule-dependent protoplast volume regulation in plasmolysed root-tip cells of Triticum turgidum: Involvement of phospholipase D. New Phytol. 2006;171:737–750. doi: 10.1111/j.1469-8137.2006.01784.x. PubMed DOI
Komis G., Apostolakos P., Galatis B. Hyperosmotic stress-induced actin filament reorganization in leaf cells of Chlorophyton comosum. J. Exp. Bot. 2002;53:1699–1710. doi: 10.1093/jxb/erf018. PubMed DOI
Komis G., Apostolakos P., Galatis B. Altered patterns of tubulin polymerization in dividing leaf cells of Chlorophyton comosum after a hyperosmotic treatment. New Phytol. 2001;149:193–207. doi: 10.1046/j.1469-8137.2001.00033.x. PubMed DOI
Ambrose C., Wasteneys G.O. Nanoscale and geometric influences on the microtubule cytoskeleton in plants: Thinking inside and outside the box. Protoplasma. 2012;249:S69–S76. doi: 10.1007/s00709-011-0334-x. PubMed DOI
Volgger M., Lang I., Ovečka M., Lichtscheidl I. Plasmolysis and cell wall deposition in wheat root hairs under osmotic stress. Protoplasma. 2010;243:51–62. doi: 10.1007/s00709-009-0055-6. PubMed DOI
Oparka K.J., Prior D.A.M., Crawford J.W. Behaviour of plasma membrane, cortical ER and plasmoldesmata during plasmolysis of onion epidermal cells. Plant Cell Environ. 1994;17:163–171. doi: 10.1111/j.1365-3040.1994.tb00279.x. DOI
Oparka K.J., Prior D.A.M., Crawford J.W. Membrane conservation during plasmolysis. In: Smallwood M., Knox J.P., Bowles D.J., editors. Membranes: Specialized Functions in Plants. BIOS Scientific Publishers Ltd.; Milton, UK: 1996. pp. 39–56.
Marc J., Granger C.L., Brincat J., Fisher D.D., Kao T.H., McCubbin A.G., Cyr R.J. A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell. 1998;10:1927–1939. PubMed PMC
Shaw S.L., Kamyar R., Ehrhardt D.W. Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science. 2003;300:1715–1718. doi: 10.1126/science.1083529. PubMed DOI
Voigt B., Timmers A.C.J., Samaj J., Muller J., Baluska F., Menzel D. GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur. J. Cell Biol. 2005;84:595–608. doi: 10.1016/j.ejcb.2004.11.011. PubMed DOI
Baskin T.I. On the alignment of cellulose microfibrils by cortical microtubules: A review and a model. Protoplasma. 2001;215:150–171. doi: 10.1007/BF01280311. PubMed DOI
Gutierrez R., Lindeboom J.J., Paredez A.R., Emons A.M.C., Ehrhardt D.W. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 2009;11:797–806. doi: 10.1038/ncb1886. PubMed DOI
Somerville C. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 2006;22:53–78. doi: 10.1146/annurev.cellbio.22.022206.160206. PubMed DOI
Vain T., Crowell E.F., Timpano H., Biot E., Desprez T., Mansoori N., Trindade L.M., Pagant S., Robert S., Hoefte H., et al. The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol. 2014;165:1521–1532. doi: 10.1104/pp.114.241216. PubMed DOI PMC
Bashline L., Du J., Gu Y. The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators. Front. Biol. 2011;6:377–383. doi: 10.1007/s11515-011-1161-3. DOI
Strzelecka-Golaszewska H. Divalent cations, nucleotides, and actin structure. Results Probl. Cell Differ. 2001;32:23–41. PubMed
Wen Q., Janmey P.A. Polymer physics of the cytoskeleton. Curr. Opin. Solid State Mater. Sci. 2011;15:177–182. doi: 10.1016/j.cossms.2011.05.002. PubMed DOI PMC
Liu Q., Qiao F., Ismail A., Chang X., Nick P. The plant cytoskeleton controls regulatory volume increase. BBA Biomembr. 2013;1828:2111–2120. doi: 10.1016/j.bbamem.2013.04.027. PubMed DOI
Wojtaszek P., Baluska F., Kasprowicz A., Luczak M., Volkmann D. Domain-specific mechanosensory transmission of osmotic and enzymatic cell wall disturbances to the actin cytoskeleton. Protoplasma. 2007;230:217–230. doi: 10.1007/s00709-006-0235-6. PubMed DOI
Singh J. Ultrastructural alterations in cells of hardened and non-hardened winter rye during hyperosmotic and extracellular freezing stresses. Protoplasma. 1979;98:329–341. doi: 10.1007/BF01676564. DOI
Lichtscheidl I.K., Url W.G. Organization and dynamics of cortical endoplasmic reticulum in inner epidermal cells of onion bulb scales. Protoplasma. 1990;157:203–215. doi: 10.1007/BF01322653. DOI
Pickard B.G., Ding J.P. The mechanosensory calcium-selective ion-channel: Key component of a plasmalemmal control center. Aust. J. Plant Physiol. 1993;20:439–459. doi: 10.1071/PP9930439. PubMed DOI
Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacce tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Silver Nanoparticles Alter Microtubule Arrangement, Dynamics and Stress Phytohormone Levels