Characterization of the mechanical properties of qPlus sensors
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
23399836
PubMed Central
PMC3566797
DOI
10.3762/bjnano.4.1
Knihovny.cz E-resources
- Keywords
- AFM, Cleveland’s method, STM, cross talk, force, qPlus, stiffness, thermal noise, tuning fork,
- Publication type
- Journal Article MeSH
In this paper we present a comparison of three different methods that can be used for estimating the stiffness of qPlus sensors. The first method is based on continuum theory of elasticity. The second (Cleveland's method) uses the change in the eigenfrequency that is induced by the loading of small masses. Finally, the stiffness is obtained by analysis of the thermal noise spectrum. We show that all three methods give very similar results. Surprisingly, neither the gold wire nor the gluing give rise to significant changes of the stiffness in the case of our home-built sensors. Furthermore we describe a fast and cost-effective way to perform Cleveland's method. This method is based on gluing small pieces of a tungsten wire; the mass is obtained from the volume of the wire, which is measured by optical microscopy. To facilitate detection of oscillation eigenfrequencies under ambient conditions, we designed and built a device for testing qPlus sensors.
See more in PubMed
Binnig G, Rohrer H, Gerber C, Weibel E. Phys Rev Lett. 1982;49:57–61. doi: 10.1103/PhysRevLett.49.57. DOI
Binnig G, Quate C F, Gerber C. Phys Rev Lett. 1986;56:930–933. doi: 10.1103/PhysRevLett.56.930. PubMed DOI
Albrecht T R, Grütter P, Horne D, Rugar D. J Appl Phys. 1991;69:668–673. doi: 10.1063/1.347347. DOI
Giessibl F J. Science. 1995;267:68–71. doi: 10.1126/science.267.5194.68. PubMed DOI
Barth C, Reichling M. Nature. 2001;414:54–57. doi: 10.1038/35102031. PubMed DOI
Sugimoto Y, Pou P, Abe M, Jelinek P, Pérez R, Morita S, Custance Ó. Nature. 2007;446:64–67. doi: 10.1038/nature05530. PubMed DOI
Setvín M, Mutombo P, Ondráček M, Majzik Z, Śvec M, Cháb V, Ošt’ádal I, Sobotik P, Jélinek P. ACS Nano. 2012;6:6969. doi: 10.1021/nn301996k. PubMed DOI
Teobaldi G, Lämmle K, Trevethan T, Watkins M, Schwarz A, Wiesendanger R, Shluger A L. Phys Rev Lett. 2011;106:216102. doi: 10.1103/PhysRevLett.106.216102. PubMed DOI
Ternes M, Lutz C P, Hirjibehedin C F, Giessibl F J, Heinrich A J. Science. 2008;319:1066–1069. doi: 10.1126/science.1150288. PubMed DOI
Sugimoto Y, Pou P, Custance O, Jelinek P, Abe M, Perez R, Morita S. Science. 2008;322:413–417. doi: 10.1126/science.1160601. PubMed DOI
Hirth S, Ostendorf F, Reichling M. Nanotechnology. 2006;17:148–154. doi: 10.1088/0957-4484/17/7/S08. PubMed DOI
Dürig U, Gimzewski J K, Pohl D W. Phys Rev Lett. 1986;57:2403–2406. doi: 10.1103/PhysRevLett.57.2403. PubMed DOI
Howald L, Meyer E, Lüthi R, Haefke H, Overney R, Rudin H, Güntherodt H-J. Appl Phys Lett. 1993;63:117–120. doi: 10.1063/1.109732. DOI
Loppacher C, Bammerlin M, Guggisberg M, Schär S, Bennewitz A, Baratoff A, Meyer E, Güntherodt H-J. Phys Rev B. 2000;62:16944. doi: 10.1103/PhysRevB.62.16944. DOI
Giessibl F J. Appl Phys Lett. 2000;76:1470–1472. doi: 10.1063/1.126067. DOI
Ternes M, González C, Lutz C P, Hapala P, Giessibl F J, Jelínek P, Heinrich A J. Phys Rev Lett. 2011;106:016802. doi: 10.1103/PhysRevLett.106.016802. PubMed DOI
König T, Simon G H, Rust H-P, Heyde M. Appl Phys Lett. 2009;95:083116. doi: 10.1063/1.3189282. DOI
Fournier N, Wagner C, Weiss C, Temirov C, Tautz F S. Phys Rev B. 2011;84:035435. doi: 10.1103/PhysRevB.84.035435. DOI
Sun Y, Mortensen H, Schär S, Lucier A-S, Miyahara Y, Grütter P, Hofer W. Phys Rev B. 2005;71:193407. doi: 10.1103/PhysRevB.71.193407. DOI
Majzik Z, Setvín M, Bettac A, Feltz A, Cháb V, Jelínek P. Beilstein J Nanotechnol. 2012;3:249–259. doi: 10.3762/bjnano.3.28. PubMed DOI PMC
Hembacher S, Giessibl F J, Mannhart J, Quate C F. Phys Rev Lett. 2005;94:056101. doi: 10.1103/PhysRevLett.94.056101. PubMed DOI
Sweetman A, Jarvis S, Danza R, Bamidele J, Gangopadhyay S, Shaw G A, Kantorovich L, Moriarty P. Phys Rev Lett. 2011;106:136101. doi: 10.1103/PhysRevLett.106.136101. PubMed DOI
Shaw G A, Pratt J R, Kubarych Z J. Small mass measurements for tuning fork-based force microscope cantilever spring constant calibration; Proceedings of the Society for Experimental Mechanics; 2011. NIST.
Kennedy S J, Cole D G, Clark R L. Rev Sci Instrum. 2009;80:125103. doi: 10.1063/1.3263907. PubMed DOI
Cleveland J P, Manne S, Bocek D, Hansma P K. Rev Sci Instrum. 1993;64:403. doi: 10.1063/1.1144209. DOI
Gao S, Zhang Z, Wu Y, Herrmann K. Meas Sci Technol. 2009;21:015103. doi: 10.1088/0957-0233/21/1/015103. DOI
Cole D G. Meas Sci Technol. 2008;19:125101. doi: 10.1088/0957-0233/19/12/125101. DOI
Lübbe J, Doering L, Reichling M. Meas Sci Technol. 2012;23:045401. doi: 10.1088/0957-0233/23/4/045401. DOI
Wutscher E, Giessibl F J. Rev Sci Instrum. 2011;82:093703. doi: 10.1063/1.3633950. PubMed DOI
Morita S, Giessibl F J, Wiesendanger R. Noncontact Atomic Force Microscopy. Springer; 2009.
Chen C J. Introduction to Scanning Tunneling Microscopy. Oxford University Press; 1993.
Golovko D S, Haschke T, Wiechert W, Bonaccurso E. Rev Sci Instrum. 2007;78:043705. doi: 10.1063/1.2720727. PubMed DOI
Gibson C T, Weeks B L, Abell C, Rayment T, Myhra S. Ultramicroscopy. 2003;97:113–118. doi: 10.1016/S0304-3991(03)00035-4. PubMed DOI
Welker J, de Faria Elsner F, Giessibl F J. Appl Phys Lett. 2011;99:084102. doi: 10.1063/1.3627184. DOI
Sader J E, Jarvis S P. Appl Phys Lett. 2004;84:1801. doi: 10.1063/1.1667267. DOI
Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature