Serum and bone pentosidine in patients with low impact hip fractures and in patients with advanced osteoarthritis
Language English Country England, Great Britain Media electronic
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
PubMed
27448601
PubMed Central
PMC4957857
DOI
10.1186/s12891-016-1168-7
PII: 10.1186/s12891-016-1168-7
Knihovny.cz E-resources
- Keywords
- Biomarkers, Osteoarthritis, Osteoporosis, Pentosidine, Proximal femoral fracture,
- MeSH
- Arginine analogs & derivatives blood MeSH
- Osteoarthritis, Hip blood MeSH
- Biomarkers blood MeSH
- Biopsy MeSH
- Femur chemistry pathology MeSH
- Femoral Neck Fractures blood surgery MeSH
- Bone Density MeSH
- Middle Aged MeSH
- Humans MeSH
- Lysine analogs & derivatives blood MeSH
- Arthroplasty, Replacement, Hip MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Chromatography, High Pressure Liquid MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Arginine MeSH
- Biomarkers MeSH
- Lysine MeSH
- pentosidine MeSH Browser
BACKGROUND: Femoral neck fractures are a common occurrence in patients suffering from osteoporosis, while intracapsular hip fracture is rare in cases of osteoarthritis of the hip. Previous histomorphometric studies have emphasized the association between bone microarchitecture and the risk of low-impact fractures in osteoarthritis and osteoporosis patients. However, the strength of bone material is also a function of composition of organic bone matrix. In order to compare tissue material properties in these two clinical conditions, serum and bone pentosidine, a non-enzymatic collagen crosslinking element, was measured in patients who suffered a low-impact fracture, and in patients with advanced osteoarthritis. METHODS: The patient population consisted of 70 patients who underwent hemiarthroplasty surgery for a femoral neck fracture, and 41 patients with advanced hip joint osteoarthritis without a history of low- impact fracture, who were indicated for total hip joint replacement. Pentosidine content was analyzed in bone samples and in serum obtained from fracture and osteoarthritis patients using high performance liquid chromatography. RESULTS: Serum and bone concentrations of pentosidine were higher in subjects with hip fractures compared with osteoarthritis after adjustment for age, sex, weight, serum creatinine, and diabetes. A significant positive correlation was found between bone and serum pentosidine in fractured cases. A comparable relationship was also demonstrated for pentosidine levels in serum and bone relative to differentiation of fracture and osteoarthritis cases. CONCLUSIONS: Serum pentosidine can be considered a potential biomarker for identification of subjects with impaired bone quality and bone strength.
See more in PubMed
Leali PT, Muresu F, Melis A, Ruggiu A, Zachos A, Doria C. Skeletal fragility definition. Clin Cases Miner Bone Metab. 2011;8(2):11–3. PubMed PMC
Garnero P. The contribution of collagen crosslinks to bone strength. BoneKey Rep. 2012;1:182. doi: 10.1038/bonekey.2012.182. PubMed DOI PMC
Seeman E, Delmas PD. Bone quality — the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61. doi: 10.1056/NEJMra053077. PubMed DOI
Saito M, Kida Y, Kato S, Marumo K. Diabetes, collagen, and bone quality. Curr Osteoporos Rep. 2014;12(2):181–8. doi: 10.1007/s11914-014-0202-7. PubMed DOI
Ikegami S, Uchiyama S, Nakamura Y, et al. Factors that characterize bone health with aging in healthy postmenopausal women. J Bone Miner Metab. 2015;33(4):440–7. doi: 10.1007/s00774-014-0608-4. PubMed DOI
Allen MR, Gineyts E, Leeming DJ, Burr DB, Delmas PD. Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int. 2008;19(3):329–37. doi: 10.1007/s00198-007-0533-7. PubMed DOI
Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech Ageing Dev. 1998;106(1–2):1–56. doi: 10.1016/S0047-6374(98)00119-5. PubMed DOI
Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28(2):195–201. doi: 10.1016/S8756-3282(00)00434-8. PubMed DOI
Vashishth D. Advanced glycation end-products and bone fractures. IBMS BoneKEy. 2009;6(8):268–78. doi: 10.1138/20090390. PubMed DOI PMC
Odetti P, Rossi S, Monacelli F, et al. Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci. 2005;1043:710–7. doi: 10.1196/annals.1333.082. PubMed DOI
Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31(1):1–7. doi: 10.1016/S8756-3282(01)00697-4. PubMed DOI
Hernandez CJ, Tang SY, Baumbach BM, et al. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone. 2005;37(6):825–32. doi: 10.1016/j.bone.2005.07.019. PubMed DOI PMC
Sell DR, Monnier VM. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 1989;264(36):21597–602. PubMed
Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21(2):195–214. doi: 10.1007/s00198-009-1066-z. PubMed DOI
Saito M, Marumo K, Fujii K, Ishioka N. Single-column high-performance liquid chromatographic-fluorescence detection of immature, mature, and senescent cross-links of collagen. Anal Biochem. 1997;253(1):26–32. doi: 10.1006/abio.1997.2350. PubMed DOI
Garnero P, Borel O, Gineyts E, et al. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone. 2006;38(3):300–9. doi: 10.1016/j.bone.2005.09.014. PubMed DOI
Viguet-Carrin S, Roux JP, Arlot ME, et al. Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone. 2006;39(5):1073–9. doi: 10.1016/j.bone.2006.05.013. PubMed DOI
Saito M, Fujii K, Soshi S, Tanaka T. Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int. 2006;17(7):986–95. doi: 10.1007/s00198-006-0087-0. PubMed DOI
Miyata T, Ishiguro N, Yasuda Y, et al. Increased pentosidine, an advanced glycation end product, in plasma and synovial fluid from patients with rheumatoid arthritis and its relation with inflammatory markers. Biochem Biophys Res Commun. 1998;244(1):45–9. doi: 10.1006/bbrc.1998.8203. PubMed DOI
Conrozier T, Merle-Vincent F, Mathieu P, et al. Epidemiological, clinical, biological and radiological differences between atrophic and hypertrophic patterns of hip osteoarthritis: a case–control study. Clin Exp Rheumatol. 2004;22(4):403–8. PubMed
Spacek P, Adam M. HPLC method for pentosidine determination in urine, serum, and tissues as a marker of glycation and oxidation loading of the organism. J Liq Chromatogr Relat Technol. 2002;25:1807–20. doi: 10.1081/JLC-120005875. DOI
Blain H, Chavassieux P, Portero-Muzy N, et al. Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone. 2008;43(5):862–8. doi: 10.1016/j.bone.2008.07.236. PubMed DOI
Resmini G, Migliaccio S, Dalle Carbonare L, et al. Differential characteristics of bone quality and bone turnover biochemical markers in patients with hip fragility fractures and hip osteoarthritis: results of a clinical pilot study. Aging Clin Exp Res. 2011;23(2):99–105. doi: 10.1007/BF03351075. PubMed DOI
Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res. 1997;12(4):641–51. doi: 10.1359/jbmr.1997.12.4.641. PubMed DOI
Li B, Aspden RM. Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis. Osteoporos Int. 1997;7(5):450–6. doi: 10.1007/s001980050032. PubMed DOI
Saito M, Fujii K, Marumo K. Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif Tissue Int. 2006;79(3):160–8. doi: 10.1007/s00223-006-0035-1. PubMed DOI
McCloskey E, Johansson H, Oden A, Kanis JA. Fracture risk assessment. Clin Biochem. 2012;45(12):887–93. doi: 10.1016/j.clinbiochem.2012.05.001. PubMed DOI
Tanaka S, Kuroda T, Saito M, Shiraki M. Urinary pentosidine improves risk classification using fracture risk assessment tools for postmenopausal women. J Bone Miner Res. 2011;26(11):2778–84. doi: 10.1002/jbmr.467. PubMed DOI
Schwartz AV, Garnero P, Hillier TA, et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab. 2009;94(7):2380–6. doi: 10.1210/jc.2008-2498. PubMed DOI PMC
Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(3):1013–9. doi: 10.1210/jc.2007-1270. PubMed DOI
Neumann T, Lodes S, Kastner B, et al. High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int. 2014;25(5):1527–33. doi: 10.1007/s00198-014-2631-7. PubMed DOI
Hashidate H, Kamimura M, Ikegami S, et al. Serum pentosidine levels after 3 years of bisphosphonate treatment in post-menopausal osteoporotic women. Endocr Res. 2015;40(3):172–6. doi: 10.3109/07435800.2014.982328. PubMed DOI
Shiraki M, Kuroda T, Tanaka S, Saito M, Fukunaga M, Nakamura T. Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab. 2008;26(1):93–100. doi: 10.1007/s00774-007-0784-6. PubMed DOI
Shiraki M, Kuroda T, Shiraki Y, Tanaka S, Higuchi T, Saito M. Urinary pentosidine and plasma homocysteine levels at baseline predict future fractures in osteoporosis patients under bisphosphonate treatment. J Bone Miner Metab. 2011;29(1):62–70. doi: 10.1007/s00774-010-0191-2. PubMed DOI
Gineyts E, Munoz F, Bertholon C, Sornay-Rendu E, Chapurlat R. Urinary levels of pentosidine and the risk of fracture in postmenopausal women: the OFELY study. Osteoporos Int. 2010;21(2):243–50. doi: 10.1007/s00198-009-0939-5. PubMed DOI
Yoshihara K, Nakamura K, Kanai M, et al. Determination of urinary and serum pentosidine and its application to elder patients. Biol Pharm Bull. 1998;21(10):1005–8. doi: 10.1248/bpb.21.1005. PubMed DOI
Takahashi M, Oikawa M, Nagano A. Effect of age and menopause on serum concentrations of pentosidine, an advanced glycation end product. J Gerontol A Biol Sci Med Sci. 2000;55(3):M137–40. doi: 10.1093/gerona/55.3.M137. PubMed DOI
Senolt L, Braun M, Olejarova M, Forejtova S, Gatterova J, Pavelka K. Increased pentosidine, an advanced glycation end product, in serum and synovial fluid from patients with knee osteoarthritis and its relation with cartilage oligomeric matrix protein. Ann Rheum Dis. 2005;64(6):886–90. doi: 10.1136/ard.2004.029140. PubMed DOI PMC
Uchiyama S, Ikegami S, Kamimura M, et al. The skeletal muscle cross sectional area in long-term bisphosphonate users is smaller than that of bone mineral density-matched controls with increased serum pentosidine concentrations. Bone. 2015;75:84–7. doi: 10.1016/j.bone.2015.02.018. PubMed DOI
Dyer DG, Blackledge JA, Thorpe SR, Baynes JW. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem. 1991;266(18):11654–60. PubMed
Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J. 1987;245(1):243–50. doi: 10.1042/bj2450243. PubMed DOI PMC
Miyata T, Iida Y, Horie K, Cai Z, Sugiyama S, Maeda K. Pathophysiology of advanced glycation end-products in renal failure. Nephrol Dial Transplant. 1996;11(Suppl 5):27–30. doi: 10.1093/ndt/11.supp5.27. PubMed DOI
Chen JR, Takahashi M, Suzuki M, Kushida K, Miyamoto S, Inoue T. Pentosidine in synovial fluid in osteoarthritis and rheumatoid arthritis: relationship with disease activity in rheumatoid arthritis. J Rheumatol. 1998;25(12):2440–4. PubMed
Rodriguez-Garcia J, Requena JR, Rodriguez-Segade S. Increased concentrations of serum pentosidine in rheumatoid arthritis. Clin Chem. 1998;44(2):250–5. PubMed
Hein GE, Kohler M, Oelzner P, Stein G, Franke S. The advanced glycation end product pentosidine correlates to IL-6 and other relevant inflammatory markers in rheumatoid arthritis. Rheumatol Int. 2005;26(2):137–41. doi: 10.1007/s00296-004-0518-1. PubMed DOI
Chiba D, Wada K, Tanaka T, et al. Serum pentosidine concentration is associated with radiographic severity of lumbar spondylosis in a general Japanese population. J Bone Miner Metab. 2015. PubMed
Tanaka K, Kanazawa I, Sugimoto T. Elevated Serum Pentosidine and Decreased Serum IGF-I Levels are Associated with Loss of Muscle Mass in Postmenopausal Women with Type 2 Diabetes Mellitus. Exp Clin Endocrinol Diabetes. 2015;124(3):163–6. doi: 10.1055/s-0035-1565103. PubMed DOI
Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int. 2000;11(6):S2–17. doi: 10.1007/s001980070002. PubMed DOI