Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk
Language English Country United States Media print
Document type Journal Article
Grant support
16491
Cancer Research UK - United Kingdom
MR/N003284/1
Medical Research Council - United Kingdom
G1000143
Medical Research Council - United Kingdom
G0401527
Medical Research Council - United Kingdom
15957
Cancer Research UK - United Kingdom
PB-PG-0407-13363
Department of Health - United Kingdom
14136
Cancer Research UK - United Kingdom
8968
Cancer Research UK - United Kingdom
PubMed
27486979
PubMed Central
PMC5302969
DOI
10.18632/oncotarget.10935
PII: 10935
Knihovny.cz E-resources
- Keywords
- CDKN2A, association study, miRSNP, pancreatic cancer, single nucleotide polymorphisms,
- MeSH
- Alleles MeSH
- Asian People MeSH
- White People MeSH
- Carcinoma, Pancreatic Ductal genetics MeSH
- Genetic Predisposition to Disease MeSH
- Genotype MeSH
- Cyclin-Dependent Kinase Inhibitor p15 genetics MeSH
- Cyclin-Dependent Kinase Inhibitor p16 MeSH
- Cyclin-Dependent Kinase Inhibitor p18 genetics MeSH
- Polymorphism, Single Nucleotide * MeSH
- Humans MeSH
- DNA Methylation MeSH
- International Cooperation MeSH
- Pancreatic Neoplasms diagnosis ethnology genetics MeSH
- Odds Ratio MeSH
- Prognosis MeSH
- Disease Progression MeSH
- Retrospective Studies MeSH
- Case-Control Studies MeSH
- Binding Sites MeSH
- Germ-Line Mutation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Japan MeSH
- Names of Substances
- CDKN2A protein, human MeSH Browser
- CDKN2B protein, human MeSH Browser
- Cyclin-Dependent Kinase Inhibitor p15 MeSH
- Cyclin-Dependent Kinase Inhibitor p16 MeSH
- Cyclin-Dependent Kinase Inhibitor p18 MeSH
The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk.
Biomedical Center Faculty of Medicine in Pilsen Charles University Prague Prague Czech Republic
Blood Transfusion Service Azienda Ospedaliero Universitaria Meyer Florence Italy
Department for Determinants of Chronic Diseases Bilthoven The Netherlands
Department of Biology University of Pisa Pisa Italy
Department of Digestive Tract Diseases Medical University of Lodz Lodz Poland
Department of Gastroenterological Surgery Aichi Cancer Center Hospital Nagoya Japan
Department of Gastroenterology Aichi Cancer Center Hospital Nagoya Japan
Department of Gastroenterology Lithuanian University of Health Sciences Kaunas Lithuania
Department of Hematology Institute of Hematology and Transfusion Medicine Warsaw Poland
Department of Laboratory Medicine University Hospital of Padova Padova Italy
Department of Medicine DIMED University of Padova Padova Italy
Department of Pathology Academic Medical Centre Amsterdam The Netherlands
Department of Surgery Academic Medical Centre Amsterdam The Netherlands
Department of Surgery Oncology and Gastroenterology DiSCOG University of Padova Padova Italy
Digestive and Liver Disease Unit S Andrea Hospital 'Sapienza' University of Rome Rome Italy
Division Epidemiology and Prevention Aichi Cancer Center Research Institute Nagoya Japan
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Division of General and Transplant Surgery Pisa University Hospital Pisa Italy
Division of Molecular Medicine Aichi Cancer Center Research Institute Nagoya Japan
Epidemiology Unit Nuffield Department of Population Health University of Oxford Oxford UK
Genomic Epidemiology Group German Cancer Research Center Heidelberg Germany
Institute of Experimental Medicine Czech Academy of Science Prague Czech Republic
Laboratory of Clinical Transplant Immunology and Genetics Copernicus Memorial Hospital Lodz Poland
Laboratory of Toxicogenomics National Institute of Public Health Prague Czech Republic
Oncological Department Massa Carrara Azienda USL Toscana Nord Ovest Carrara Italy
Pancreas Unit Department of Digestive System Dant'Orsola Malpighi Hospital Bologna Italy
See more in PubMed
Siegel RL, Miller KD, Jemal A. Cancer statistics 2015. CA Cancer J Clin. 2015;65:5–29. doi: 10.3322/caac.21254. PubMed DOI
Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17. doi: 10.1056/NEJMra0901557. PubMed DOI
Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH. Recent progress in pancreatic cancer. CA Cancer J Clin. 2013;63:318–48. doi: 10.3322/caac.21190. PubMed DOI PMC
Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, Arslan AA, Bueno-de-Mesquita HB, Gross M, Helzlsouer K, Jacobs EJ, LaCroix A, Zheng W, Albanes D, et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet. 2009;41:986–90. doi: 10.1038/ng.429. ng.429 [pii] PubMed DOI PMC
Low SK, Kuchiba A, Zembutsu H, Saito A, Takahashi A, Kubo M, Daigo Y, Kamatani N, Chiku S, Totsuka H, Ohnami S, Hirose H, Shimada K, et al. Genome-wide association study of pancreatic cancer in Japanese population. PLoS One. 2010;5:e11824. PubMed PMC
Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, Jacobs KB, Arslan AA, Bueno-de-Mesquita HB, Gallinger S, Gross M, Helzlsouer K, Holly EA, Jacobs EJ, et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22 1 1q32 1 and 5p15 33. Nat Genet. 2010;42:224–8. doi: 10.1038/ng.522. ng.522 [pii] PubMed DOI PMC
Wu C, Miao X, Huang L, Che X, Jiang G, Yu D, Yang X, Cao G, Hu Z, Zhou Y, Zuo C, Wang C, Zhang X, et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet. 2011;44:62–6. PubMed
Childs EJ, Mocci E, Campa D, Bracci PM, Gallinger S, Goggins M, Li D, Neale RE, Olson SH, Scelo G, Amundadottir LT, Bamlet WR, Bijlsma MF, et al. Common variation at 2p13 3 3q29 7p13 and 17q25 1 associated with susceptibility to pancreatic cancer. Nat Genet. 2015;47:911–6. doi: 10.1038/ng.3341. PubMed DOI PMC
Wolpin BM, Rizzato C, Kraft P, Kooperberg C, Petersen GM, Wang Z, Arslan AA, Beane-Freeman L, Bracci PM, Buring J, Canzian F, Duell EJ, Gallinger S, et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet. 2014;46:994–1000. doi: 10.1038/ng.3052. PubMed DOI PMC
Rizzato C, Campa D, Giese N, Werner J, Rachakonda PS, Kumar R, Schanne M, Greenhalf W, Costello E, Khaw KT, Key TJ, Siddiq A, Lorenzo-Bermejo J, et al. Pancreatic cancer susceptibility loci and their role in survival. PLoS One. 2011;6:e27921. PubMed PMC
Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM, Yeo CJ, Jackson CE, Lynch HT, Hruban RH, Kern SE. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 1996;56:5360–4. PubMed
Hassan MM, Bondy ML, Wolff RA, Abbruzzese JL, Vauthey JN, Pisters PW, Evans DB, Khan R, Chou TH, Lenzi R, Jiao L, Li D. Risk factors for pancreatic cancer: case-control study. Am J Gastroenterol. 2007;102:2696–707. PubMed PMC
Kastrinos F, Mukherjee B, Tayob N, Wang F, Sparr J, Raymond VM, Bandipalliam P, Stoffel EM, Gruber SB, Syngal S. Risk of pancreatic cancer in families with Lynch syndrome. Jama. 2009;302:1790–5. doi: 10.1001/jama.2009.1529. PubMed DOI PMC
Tischkowitz MD, Sabbaghian N, Hamel N, Borgida A, Rosner C, Taherian N, Srivastava A, Holter S, Rothenmund H, Ghadirian P, Foulkes WD, Gallinger S. Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology. 2009;137:1183–6. PubMed PMC
Vasen HF, Gruis NA, Frants RR, van Der Velden PA, Hille ET, Bergman W. Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden) Int J Cancer. 2000;87:809–11. PubMed
Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J, Chang DK, Cowley MJ, Gardiner BB, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491:399–405. doi: 10.1038/nature11547. PubMed DOI PMC
Ghiorzo P. Genetic predisposition to pancreatic cancer. World J Gastroenterol. 2014;20:10778–89. doi: 10.3748/wjg.v20.i31.10778. PubMed DOI PMC
Tang B, Li Y, Qi G, Yuan S, Wang Z, Yu S, Li B, He S. Clinicopathological Significance of CDKN2A Promoter Hypermethylation Frequency with Pancreatic Cancer. Sci Rep. 2015;5:13563. doi: 10.1038/srep13563. PubMed DOI PMC
Al Olama AA, Kote-Jarai Z, Berndt SI, Conti DV, Schumacher F, Han Y, Benlloch S, Hazelett DJ, Wang Z, Saunders E, Leongamornlert D. A meta-analysis of 87040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet. 2014;46:1103–9. doi: 10.1038/ng.3094. PubMed DOI PMC
Bishop DT, Demenais F, Iles MM, Harland M, Taylor JC, Corda E, Randerson-Moor J, Aitken JF, Avril MF, Azizi E, Bakker B, Bianchi-Scarra G, Bressac-de Paillerets B, et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet. 2009;41:920–5. doi: 10.1038/ng.411. PubMed DOI PMC
Campa D, Barrdahl M, Gaudet MM, Black A, Chanock SJ, Diver WR, Gapstur SM, Haiman C, Hankinson S, Hazra A, Henderson B, Hoover RN, Hunter DJ, et al. Genetic risk variants associated with in situ breast cancer. Breast Cancer Res. 2015;17:82. doi: 10.1186/s13058-015-0596-x. PubMed DOI PMC
Stacey SN, Sulem P, Masson G, Gudjonsson SA, Thorleifsson G, Jakobsdottir M, Sigurdsson A, Gudbjartsson DF, Sigurgeirsson B, Benediktsdottir KR, Thorisdottir K, Ragnarsson R, Scherer D, et al. New common variants affecting susceptibility to basal cell carcinoma. Nat Genet. 2009;41:909–14. doi: 10.1038/ng.412. PubMed DOI PMC
Vijayakrishnan J, Henrion M, Moorman AV, Fiege B, Kumar R, Inacio da Silva Filho M, Holroyd A, Koehler R, Thomsen H, Irving JA, Allan JM, Lightfoot T, Roman E, et al. The 9p21 3 risk of childhood acute lymphoblastic leukaemia is explained by a rare high-impact variant in CDKN2A. Sci Rep. 2015;5:15065. doi: 10.1038/srep15065. PubMed DOI PMC
Walsh KM, de Smith AJ, Hansen HM, Smirnov IV, Gonseth S, Endicott AA, Xiao J, Rice T, Fu CH, McCoy LS, Lachance DH, Eckel-Passow JE, Wiencke JK, et al. A Heritable Missense Polymorphism in CDKN2A Confers Strong Risk of Childhood Acute Lymphoblastic Leukemia and Is Preferentially Selected during Clonal Evolution. Cancer Res. 2015;75:4884–94. doi: 10.1158/0008-5472.can-15-1105. PubMed DOI PMC
Li WQ, Pfeiffer RM, Hyland PL, Shi J, Gu F, Wang Z, Bhattacharjee S, Luo J, Xiong X, Yeager M, Deng X, Hu N, Taylor PR, et al. Genetic polymorphisms in the 9p21 region associated with risk of multiple cancers. Carcinogenesis. 2014;35:2698–705. doi: 10.1093/carcin/bgu203. PubMed DOI PMC
Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, Horikoshi M, Johnson AD, Ng MC, Prokopenko I, Saleheen D, Wang X, Zeggini E, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44. doi: 10.1038/ng.2897. PubMed DOI PMC
Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5. doi: 10.1126/science.1142382. PubMed DOI PMC
Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, Andersen G, Ardlie K, Bostrom KB, Bergman RN, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45. doi: 10.1038/ng.120. PubMed DOI PMC
Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366:704–7. doi: 10.1038/366704a0. PubMed DOI
Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92:725–34. PubMed
Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, Schmidt MK, Chang-Claude J, Bojesen SE, Bolla MK, Wang Q, Dicks E, Lee A, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45:353–61. 61e1–2. doi: 10.1038/ng.2563. PubMed DOI PMC
Stacey SN, Helgason H, Gudjonsson SA, Thorleifsson G, Zink F, Sigurdsson A, Kehr B, Gudmundsson J, Sulem P, Sigurgeirsson B, Benediktsdottir KR, Thorisdottir K, Ragnarsson R, et al. New basal cell carcinoma susceptibility loci. Nat Commun. 2015;6:6825. doi: 10.1038/ncomms7825. PubMed DOI PMC
Stacey SN, Sulem P, Gudbjartsson DF, Jonasdottir A, Thorleifsson G, Gudjonsson SA, Masson G, Gudmundsson J, Sigurgeirsson B, Benediktsdottir KR, Thorisdottir K, Ragnarsson R, Fuentelsaz V, et al. Germline sequence variants in TGM3 and RGS22 confer risk of basal cell carcinoma. Hum Mol Genet. 2014;23:3045–53. doi: 10.1093/hmg/ddt671. PubMed DOI PMC
Pasquale LR, Loomis SJ, Kang JH, Yaspan BL, Abdrabou W, Budenz DL, Chen TC, Delbono E, Friedman DS, Gaasterland D, Gaasterland T, Grosskreutz CL, Lee RK, et al. CDKN2B-AS1 genotype-glaucoma feature correlations in primary open-angle glaucoma patients from the United States. Am J Ophthalmol. 2013;155:342–53e5. doi: 10.1016/j.ajo.2012.07.023. PubMed DOI PMC
Schaefer AS, Richter GM, Dommisch H, Reinartz M, Nothnagel M, Noack B, Laine ML, Folwaczny M, Groessner-Schreiber B, Loos BG, Jepsen S, Schreiber S. CDKN2BAS is associated with periodontitis in different European populations and is activated by bacterial infection. J Med Genet. 2011;48:38–47. doi: 10.1136/jmg.2010.078998. PubMed DOI
Yang XC, Zhang Q, Chen ML, Li Q, Yang ZS, Li L, Cao FF, Chen XD, Liu WJ, Jin L, Wang XF. MTAP and CDKN2B genes are associated with myocardial infarction in Chinese Hans. Clin Biochem. 2009;42:1071–5. doi: 10.1016/j.clinbiochem.2009.02.021. PubMed DOI
Chung CC, Chanock SJ. Current status of genome-wide association studies in cancer. Hum Genet. 2011 PubMed
Campa D, Rizzato C, Stolzenberg-Solomon R, Pacetti P, Vodicka P, Cleary SP, Capurso G, Bueno-de-Mesquita HB, Werner J, Gazouli M, Butterbach K, Ivanauskas A, Giese N, et al. TERT gene harbors multiple variants associated with pancreatic cancer susceptibility. Int J Cancer. 2015;137:2175–83. doi: 10.1002/ijc.29590. PubMed DOI PMC
Ghanbari M, Franco OH, de Looper HW, Hofman A, Erkeland SJ, Dehghan A. Genetic Variations in MicroRNA-Binding Sites Affect MicroRNA-Mediated Regulation of Several Genes Associated With Cardio-metabolic Phenotypes. Circ Cardiovasc Genet. 2015;8:473–86. doi: 10.1161/circgenetics.114.000968. PubMed DOI
Wang X, Li W, Ma L, Gao J, Liu J, Ping F, Nie M. Association study of the miRNA-binding site polymorphisms of CDKN2A/B genes with gestational diabetes mellitus susceptibility. Acta Diabetol. 2015;52:951–8. doi: 10.1007/s00592-015-0768-2. PubMed DOI
Xu H, Zhang H, Yang W, Yadav R, Morrison AC, Qian M, Devidas M, Liu Y, Perez-Andreu V, Zhao X, Gastier-Foster JM, Lupo PJ, Neale G, et al. Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children. Nat Commun. 2015;6:7553. doi: 10.1038/ncomms8553. PubMed DOI PMC
Barrdahl M, Canzian F, Joshi AD, Travis RC, Chang-Claude J, Auer PL, Gapstur SM, Gaudet M, Diver WR, Henderson BE, Haiman CA, Schumacher FR, Le Marchand L, et al. Post-GWAS gene-environment interplay in breast cancer: results from the Breast and Prostate Cancer Cohort Consortium and a meta-analysis on 79000 women. Hum Mol Genet. 2014;23:5260–70. doi: 10.1093/hmg/ddu223. PubMed DOI PMC
Campa D, Kaaks R, Le Marchand L, Haiman CA, Travis RC, Berg CD, Buring JE, Chanock SJ, Diver WR, Dostal L, Fournier A, Hankinson SE, Henderson BE, et al. Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. J Natl Cancer Inst. 2011;103:1252–63. doi: 10.1093/jnci/djr265. PubMed DOI PMC
Campa D, Rizzato C, Capurso G, Giese N, Funel N, Greenhalf W, Soucek P, Gazouli M, Pezzilli R, Pasquali C, Talar-Wojnarowska R, Cantore M, Andriulli A, et al. Genetic susceptibility to pancreatic cancer and its functional characterisation: The PANcreatic Disease ReseArch (PANDoRA) consortium. Dig Liver Dis. 2012 http://dx.doi.org/10.1016/j.dld.2012.09.014 PubMed DOI
Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, Charrondiere UR, Hemon B, Casagrande C, Vignat J, Overvad K, Tjonneland A, Clavel-Chapelon F, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–24. doi: 10.1079/phn2002394. PubMed DOI
Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, Cherry JM, Snyder M. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7. doi: 10.1101/gr.137323.112. PubMed DOI PMC
Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states conservation and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–4. doi: 10.1093/nar/gkr917. PubMed DOI PMC
Grundberg E, Small KS, Hedman AK, Nica AC, Buil A, Keildson S, Bell JT, Yang TP, Meduri E, Barrett A, Nisbett J, Sekowska M, Wilk A, et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet. 2012;44:1084–9. doi: 10.1038/ng.2394. PubMed DOI PMC
Consortium G. Human genomics The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60. doi: 10.1126/science.1262110. PubMed DOI PMC
Exploring the Neandertal legacy of pancreatic ductal adenocarcinoma risk in Eurasians
Common variability in oestrogen-related genes and pancreatic ductal adenocarcinoma risk in women
Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk