Towards the identification of tissue-based proxy biomarkers

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27570655

Accurate patient population stratification is a key requirement for a personalized medicine and more precise biomarkers are expected to be obtained by better exploiting the available data. We introduce a novel computational framework that exploits both the information from gene expression data and histopathology images for constructing a tissue-based biomarker, which can be used for identifying a high-risk patient population. Its utility is demonstrated in the context of colorectal cancer data and we show that the resulting biomarker can be used as a proxy for a prognostic gene expression signature. These results are important for both the computational discovery of new biomarkers and clinical practice, as they demonstrate a possible approach for multimodal biomedical data mining and since the new tissue-based biomarker could easily be implemented in the routine pathology practice.

Zobrazit více v PubMed

Berx G, Cleton-Jansen AM, Nollet F, et al. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. The EMBO Journal. 1995;14:6-107–115. PubMed PMC

Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2001;121:2750–2767. PubMed PMC

Popovici V, Budinská E, Tejpar S, et al. Identification of a poor-prognosis BRAF-mutant-like population of patients with colon cancer. J Clin Oncol. 2012;30(12):1288–1295. PubMed

Cooper LA, Kong J, Gutman DA, et al. An integrative approach for in silico glioma research. IEEE Trans Biomed Eng. 2010;57(10):2617–21. PubMed PMC

Kong J, Cooper LA, Wang F, et al. Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images, and clinical outcomes. IEEE Trans Biomed Eng. 2011;58(12):3469–74. PubMed PMC

Yuan Y, Failmezger H, Rueda OM, et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci Trans Med. 2012;4(157):157ra143. PubMed

Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl J Med. 2012;366(10):883–892. PubMed PMC

Vecchione L. BRAF mutant colorectal cancer: a different entity. ESMO 16th World Congress on Gastrointestinal Cancer. 2014

San Lucas FA, Fowler J, Kopetz S, Scheet P, Vilar E. Discovering new targeted therapies for BRAF mutant-like colorectal cancers. ASCO Annual Meeting. J Clin Oncol. 2013;31(suppl; abstr 3623)

Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol. 2001;23(4):291–299. PubMed

Csurka G, Dance C, Fan L. Visual categorization with bags of keypoints; ECCV International Workshop on Statistical Learning in Computer Vision; 2004.

Gray RM. Vector quantization. IEEE ASSP Magazine. 1984;1(2):4–29.

Bay H, Ess A, Tuytelaars T, Van Gool L. SURF: speeded up robust features. Comput Vis Image Und. 2008;110(3):346–359.

Agresti A, Coull BA. Approximate is better than ‘exact’ for interval estimation of binomial proportions. Am Stat. 1998;52:119–126.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Identification of "BRAF-Positive" Cases Based on Whole-Slide Image Analysis

. 2017 ; 2017 () : 3926498. [epub] 20170424

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...