Identification of "BRAF-Positive" Cases Based on Whole-Slide Image Analysis

. 2017 ; 2017 () : 3926498. [epub] 20170424

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28523274

A key requirement for precision medicine is the accurate identification of patients that would respond to a specific treatment or those that represent a high-risk group, and a plethora of molecular biomarkers have been proposed for this purpose during the last decade. Their application in clinical settings, however, is not always straightforward due to relatively high costs of some tests, limited availability of the biological material and time, and procedural constraints. Hence, there is an increasing interest in constructing tissue-based surrogate biomarkers that could be applied with minimal overhead directly to histopathology images and which could be used for guiding the selection of eventual further molecular tests. In the context of colorectal cancer, we present a method for constructing a surrogate biomarker that is able to predict with high accuracy whether a sample belongs to the "BRAF-positive" group, a high-risk group comprising V600E BRAF mutants and BRAF-mutant-like tumors. Our model is trained to mimic the predictions of a 64-gene signature, the current definition of BRAF-positive group, thus effectively identifying histopathology image features that can be linked to a molecular score. Since the only required input is the routine histopathology image, the model can easily be integrated in the diagnostic workflow.

Zobrazit více v PubMed

Compton C. C. Colorectal carcinoma: diagnostic, prognostic, and molecular features. Modern Pathology. 2003;16(4):376–388. doi: 10.1097/01.MP.0000062859.46942.93. PubMed DOI

Bosman F. T., Yan P. Molecular pathology of colorectal cancer. Polish Journal of Pathology. 2014;65(4):257–266. doi: 10.5114/pjp.2014.48094. PubMed DOI

Lièvre A., Bachet J. B., le Corre D., et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Research. 2006;66(8):3992–3995. doi: 10.1158/0008-5472.can-06-0191. PubMed DOI

Benvenuti S., Sartore-Bianchi A., di Nicolantonio F., et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Research. 2007;67(6):2643–2648. doi: 10.1158/0008-5472.can-06-4158. PubMed DOI

Budinska E., Popovici V., Tejpar S., et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. Journal of Pathology. 2013;231(1):63–76. doi: 10.1002/path.4212. PubMed DOI PMC

Marisa L., de Reyniès A., Duval A., et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Medicine. 2013;10(5) doi: 10.1371/journal.pmed.1001453.e1001453 PubMed DOI PMC

Sadanandam A., Lyssiotis C. A., Homicsko K., et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nature Medicine. 2013;19(5):619–625. doi: 10.1038/nm.3175. PubMed DOI PMC

Popovici V., Budinska E., Tejpar S., et al. Identification of a poor-prognosis BRAF-mutant—like population of patients with colon cancer. The Journal of Clinical Oncology. 2012;30(12):1288–1295. doi: 10.1200/jco.2011.39.5814. PubMed DOI

Berx G., Cleton-Jansen A.-M., Nollet F., et al. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO Journal. 1995;14(24):6107–6115. PubMed PMC

Lehmann B. D., Bauer J. A., Chen X., et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. Journal of Clinical Investigation. 2011;121(7):2750–2767. doi: 10.1172/JCI45014. PubMed DOI PMC

Kong J., Cooper L. A. D., Wang F., et al. Integrative, multimodal analysis of glioblastoma using TCGA molecular data, pathology images, and clinical outcomes. IEEE Transactions on Biomedical Engineering. 2011;58(12):3469–3474. doi: 10.1109/TBME.2011.2169256. PubMed DOI PMC

Yuan Y., Failmezger H., Rueda O. M., et al. Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Science Translational Medicine. 2012;4(157) doi: 10.1126/scitranslmed.3004330.3004330 PubMed DOI

Popovici V. Towards the identification of tissue-based proxy biomarkers. Proceedings of the AMIA Joint Summits on Translational Science; 2016. PubMed PMC

van Cutsem E., Labianca R., Bodoky G., et al. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. Journal of Clinical Oncology. 2009;27(19):3117–3125. doi: 10.1200/jco.2008.21.6663. PubMed DOI

Satyanarayanan M., Goode A., Gilbert B., Harkes J., Jukic D. OpenSlide: a vendor-neutral software foundation for digital pathology. Journal of Pathology Informatics. 2013;4(1):p. 27. doi: 10.4103/2153-3539.119005. PubMed DOI PMC

Ruifrok A. C., Johnston D. A. Quantification of histochemical staining by color deconvolution. Analytical and Quantitative Cytology and Histology. 2001;23(4):291–299. doi: 10.1097/00129039-200303000-00014. PubMed DOI

Csurka G., Dance C. R., Fan L., Willamowski J., Bray C. Visual categorization with bags of keypoints. Proceeding of the Workshop on Statistical Learning in Computer Vision; ECCV; New York. 2004.

Lazebnik S., Schmid C., Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '06); June 2006; pp. 2169–2178. DOI

Daugman J. G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A: Optics and Image Science, and Vision. 1985;2(7):1160–1169. doi: 10.1364/JOSAA.2.001160. PubMed DOI

Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning. 2002;46(1–3):389–422. doi: 10.1023/A:1012487302797. DOI

Cortes C., Vapnik V. Support-vector networks. Machine Learning. 1995;20(3):273–297. doi: 10.1007/BF00994018. DOI

Agresti A., Coull B. A. Approximate is better than “exact'' for interval estimation of binomial proportions. The American Statistician. 1998;52(2):119–126. doi: 10.2307/2685469. DOI

Robin X., Turck N., Hainard A., et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12, article 77 doi: 10.1186/1471-2105-12-77. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...