Enquiry into the Topology of Plasma Membrane-Localized PIN Auxin Transport Components
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27622590
PubMed Central
PMC5106287
DOI
10.1016/j.molp.2016.08.010
PII: S1674-2052(16)30191-5
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, auxin efflux carriers, plasma membrane protein, topology,
- MeSH
- Arabidopsis cytologie metabolismus MeSH
- buněčná membrána metabolismus MeSH
- cytoplazma metabolismus MeSH
- extracelulární prostor metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové transportní proteiny chemie metabolismus MeSH
- proteinové domény MeSH
- proteiny huseníčku chemie metabolismus MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- membránové transportní proteiny MeSH
- PIN1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regardless of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immunolocalization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five α-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure-function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants.
Zobrazit více v PubMed
Abas L., Benjamins R., Malenica N., Paciorek T., Wiśniewska J., Moulinier–Anzola J.C., Sieberer T., Friml J., Luschnig C. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 2006;8:249–256. PubMed
Adamowski M., Friml J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell. 2015;27:20–32. PubMed PMC
Alonso J.M., Stepanova A.N., Leisse T.J., Kim C.J., Chen H., Shinn P., Stevenson D.K., Zimmerman J., Barajas P., Cheuk R. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301:653–657. PubMed
Barbosa I.C.R., Zourelidou M., Willige B.C., Weller B., Schwechheimer C. D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane. Dev. Cell. 2014;29:674–685. PubMed
Benjamins R., Scheres B. Auxin: the looping star in plant development. Annu. Rev. Plant Biol. 2008;59:443–465. PubMed
Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003;115:591–602. PubMed
Bennett T., Brockington S.F., Rothfels C., Graham S.W., Stevenson D., Kutchan T., Rolf M., Thomas P., Wong G.K.-S., Leyser O. Paralogous radiations of pin proteins with multiple origins of noncanonical pin structure. Mol. Biol. Evol. 2014;31:2042–2060. PubMed PMC
Berleth T., Scarpella E., Prusinkiewicz P. Towards the systems biology of auxin-transport-mediated patterning. Trends Plant Sci. 2007;12:151–159. PubMed
Bernsel A., Viklund H., Hennerdal A., Elofsson A. TOPCONS: consensus prediction of membrane protein topology. Nucl. Acids Res. 2009;37:W465–W468. PubMed PMC
Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M., Palme K., Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433:39–44. PubMed
Bliss C.L., Novy F.G. Action of formaldehyde on enzymes and on certain pboteids. J. Exp. Med. 1899;4:47–80. PubMed PMC
Bosco C.D., Dovzhenko A., Liu X., Woerner N., Rensch T., Eismann M., Eimer S., Hegermann J., Paponov I.A., Ruperti B. The endoplasmic reticulum localized PIN8 is a pollen specific auxin carrier involved in intracellular auxin homeostasis. Plant J. 2012;71:860–870. PubMed
Bowie J.U. Flip-flopping membrane proteins. Nat. Struct. Mol. Biol. 2006;13:94–96. PubMed
Brach T., Soyk S., Müller C., Hinz G., Hell R., Brandizzi F., Meyer A.J. Non-invasive topology analysis of membrane proteins in the secretory pathway. Plant J. 2009;57:534–541. PubMed
Daley D.O., Rapp M., Granseth E., Melén K., Drew D., von Heijne G. Global topology analysis of the Escherichia coli inner membrane proteome. Science. 2005;308:1321–1323. PubMed
Ding Z., Wang B., Moreno I., Dupláková N., Simon S., Carraro N., Reemmer J., Pěnčík A., Chen X., Tejos R. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat. Commun. 2012;3:941. PubMed
Domingo B., Gasset M., Durán-Prado M., Castaño J., Serrano A., Fischer T., Llopis J. Discrimination between alternate membrane protein topologies in living cells using GFP/YFP tagging and pH exchange. Cell Mol. Life Sci. 2010;67:3345–3354. PubMed PMC
Drew D., Sjöstrand D., Nilsson J., Urbig T., Chin C., de Gier J.-W., von Heijne G. Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc. Natl. Acad. Sci. USA. 2002;99:2690–2695. PubMed PMC
Elofsson A., von Heijne G. Membrane protein structure: prediction versus reality. Annu. Rev. Biochem. 2007;76:125–140. PubMed
Feraru E., Feraru M.I., Kleine-Vehn J., Martinière A., Mouille G., Vanneste S., Vernhettes S., Runions J., Friml J. Pin polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 2011;21:338–343. PubMed
Friml J., Benková E., Mayer U., Palme K., Muster G. Automated whole mount localisation techniques for plant seedlings. Plant J. 2003;34:115–124. PubMed
Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426:147–153. PubMed
Friml J., Yang X., Michniewicz M., Weijers D., Quint A., Tietz O., Benjamins R., Ouwerkerk P.B.F., Ljung K., Sandberg G. A PINOID-dependent binary switch in apical-basal pin polar targeting directs auxin efflux. Science. 2004;306:862–865. PubMed
Furutani M., Vernoux T., Traas J., Kato T., Tasaka M., Aida M. PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development. 2004;131:5021–5030. PubMed
Gälweiler L., Guan C., Müller A., Wisman E., Mendgen K., Yephremov A., Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science. 1998;282:2226–2230. PubMed
Ganguly A., Sasayama D., Cho H.-T. Regulation of the polarity of protein trafficking by phosphorylation. Mol. Cells. 2012;33:423–430. PubMed PMC
Ganguly A., Park M., Kesawat M.S., Cho H.-T. Functional analysis of the hydrophilic loop in intracellular trafficking of Arabidopsis PIN-FORMEDproteins. Plant Cell. 2014;26:1570–1585. PubMed PMC
Gjetting S.K., Ytting C.K., Schulz A., Fuglsang A.T. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. J. Exp. Bot. 2012;63:3207–3218. PubMed PMC
Hopwood D. Theoretical and practical aspects of glutaraldehyde fixation. Histochem. J. 1972;4:267–303. PubMed
Huang F., Kemel Zago M., Abas L., van Marion A., Galván-Ampudia C.S., Offringa R. Phosphorylation of conserved pin motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell. 2010;22:1129–1142. PubMed PMC
Jones D.T. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics. 2007;23:538–544. PubMed
Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protocols. 2015;10:845–858. PubMed PMC
Kim H., Melén K., von Heijne G. Topology models for 37 Saccharomyces cerevisiae membrane proteins based on C-terminal reporter fusions and predictions. J. Biol. Chem. 2003;278:10208–10213. PubMed
Kitakura S., Vanneste S., Robert S., Löfke C., Teichmann T., Tanaka H., Friml J. Clathrin mediates endocytosis and polar distribution of pin auxin transporters in Arabidopsis. Plant Cell. 2011;23:1920–1931. PubMed PMC
Kleine-Vehn J., Dhonukshe P., Sauer M., Brewer P.B., Wiśniewska J., Paciorek T., Benková E., Friml J. Arf GEF-dependent transcytosis and polar delivery of pin auxin carriers in Arabidopsis. Curr. Biol. 2008;18:526–531. PubMed
Kleine-Vehn J., Leitner J., Zwiewka M., Sauer M., Abas L., Luschnig C., Friml J. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. PNAS. 2008;105:17812–17817. PubMed PMC
Kneen M., Farinas J., Li Y., Verkman A.S. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 1998;74:1591–1599. PubMed PMC
Křeček P., Skůpa P., Libus J., Naramoto S., Tejos R., Friml J., Zažímalová E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 2009;10:249. PubMed PMC
Ljung K. Auxin metabolism and homeostasis during plant. Development. 2013;140:943–950. PubMed
Llopis J., McCaffery J.M., Miyawaki A., Farquhar M.G., Tsien R.Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. USA. 1998;95:6803–6808. PubMed PMC
Lorenz H., Hailey D.W., Lippincott-Schwartz J. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat. Meth. 2006;3:205–210. PubMed
Mayor S., Riezman H. Sorting GPI-anchored proteins. Nat. Rev. Mol. Cell Biol. 2004;5:110–120. PubMed
Michniewicz M., Zago M.K., Abas L., Weijers D., Schweighofer A., Meskiene I., Heisler M.G., Ohno C., Zhang J., Huang F. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell. 2007;130:1044–1056. PubMed
Migneault I., Dartiguenave C., Bertrand M.J., Waldron K.C. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques. 2004;37:790–796. 798–802. PubMed
Movafeghi A., Happel N., Pimpl P., Tai G.-H., Robinson D.G. Arabidopsis Sec21p and Sec23p homologs. Probable coat proteins of plant COP-coated vesicles. Plant Physiol. 1999;119:1437–1446. PubMed PMC
Mravec J., Skůpa P., Bailly A., Hoyerová K., Krecek P., Bielach A., Petrásek J., Zhang J., Gaykova V., Stierhof Y.-D. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature. 2009;459:1136–1140. PubMed
Nilsson J., Persson B., von Heijne G. Consensus predictions of membrane protein topology. FEBS Lett. 2000;486:267–269. PubMed
Nilsson J., Persson B., von Heijne G. Prediction of partial membrane protein topologies using a consensus approach. Protein Sci. 2002;11:2974–2980. PubMed PMC
Nisar N., Cuttriss A.J., Pogson B.J., Cazzonelli C.I. The promoter of the Arabidopsis PIN6 auxin transporter enabled strong expression in the vasculature of roots, leaves, floral stems and reproductive organs. Plant Signal Behav. 2014;9:e27898. PubMed PMC
Ohad N., Shichrur K., Yalovsky S. The analysis of protein-protein interactions in plants by bimolecular fluorescence complementation. Plant Physiol. 2007;145:1090–1099. PubMed PMC
Okada K., Ueda J., Komaki M.K., Bell C.J., Shimura Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell. 1991;3:677–684. PubMed PMC
Osterrieder A., Carvalho C.M., Latijnhouwers M., Johansen J.N., Stubbs C., Botchway S., Hawes C. Fluorescence lifetime imaging of interactions between Golgi tethering factors and small GTPases in plants. Traffic. 2009;10:1034–1046. PubMed
Paciorek T., Zazímalová E., Ruthardt N., Petrásek J., Stierhof Y.-D., Kleine-Vehn J., Morris D.A., Emans N., Jürgens G., Geldner N. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature. 2005;435:1251–1256. PubMed
Palme K., Gälweiler L. PIN-pointing the molecular basis of auxin transport. Curr. Opin. Plant Biol. 1999;2:375–381. PubMed
Petrášek J., Mravec J., Bouchard R., Blakeslee J.J., Abas M., Seifertová D., Wiśniewska J., Tadele Z., Kubeš M., Čovanová M. Pin proteins perform a rate-limiting function in cellular auxin efflux. Science. 2006;312:914–918. PubMed
Pimpl P., Movafeghi A., Coughlan S., Denecke J., Hillmer S., Robinson D.G. In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell. 2000;12:2219–2235. PubMed PMC
Pogorelko G., Fursova O., Lin M., Pyle E., Jass J., Zabotina O. Post-synthetic modification of plant cell walls by expression of microbial hydrolases in the apoplast. Plant Mol. Biol. 2011;77:433–445. PubMed
Rapp M., Drew D., Daley D.O., Nilsson J., Carvalho T., Melén K., De Gier J.-W., von Heijne G. Experimentally based topology models for E. coli inner membrane proteins. Protein Sci. 2004;13:937–945. PubMed PMC
Rapp M., Granseth E., Seppälä S., von Heijne G. Identification and evolution of dual-topology membrane proteins. Nat. Struct. Mol. Biol. 2006;13:112–116. PubMed
Robert S., Chary S.N., Drakakaki G., Li S., Yang Z., Raikhel N.V., Hicks G.R. Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc. Natl. Acad. Sci. USA. 2008;105:8464–8469. PubMed PMC
Robert H.S., Crhak Khaitova L., Mroue S., Benková E. The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. J. Exp. Bot. 2015;66:5029–5042. PubMed
Russell A.D., Hopwood D. The biological uses and importance of glutaraldehyde. Prog. Med. Chem. 1976;13:271–301. PubMed
Sabatini D.D., Bensch K., Barrnett R.J. Cytochemistry and electron microscopy. J. Cell Biol. 1963;17:19–58. PubMed PMC
Sauer M., Paciorek T., Benková E., Friml J. Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat. Protoc. 2006;1:98–103. PubMed
Schwacke R., Schneider A., Van Der Graaff E., Fischer K., Catoni E., Desimone M., Frommer W.B., Flügge U.-I., Kunze R. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 2003;131:16–26. PubMed PMC
Schwede T. Protein modeling: what happened to the “protein structure gap”? Structure. 2013;21:1531–1540. PubMed PMC
Sedbrook J.C., Carroll K.L., Hung K.F., Masson P.H., Somerville C.R. The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell. 2002;14:1635–1648. PubMed PMC
Simon S., Petrášek J. Why plants need more than one type of auxin. Plant Sci. 2011;180:454–460. PubMed
Sparkes I., Tolley N., Aller I., Svozil J., Osterrieder A., Botchway S., Mueller C., Frigerio L., Hawes C. Five Arabidopsis reticulon isoforms share endoplasmic reticulum location, topology, and membrane-shaping properties. Plant Cell. 2010;22:1333–1343. PubMed PMC
Swarup R., Friml J., Marchant A., Ljung K., Sandberg G., Palme K., Bennett M. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 2001;15:2648–2653. PubMed PMC
Swarup R., Kargul J., Marchant A., Zadik D., Rahman A., Mills R., Yemm A., May S., Williams L., Millner P. Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell. 2004;16:3069–3083. PubMed PMC
Swarup K., Benková E., Swarup R., Casimiro I., Péret B., Yang Y., Parry G., Nielsen E., De Smet I., Vanneste S. The auxin influx carrier LAX3 promotes lateral root emergence. Nat. Cell Biol. 2008;10:946–954. PubMed
Tanaka K.A.K., Suzuki K.G.N., Shirai Y.M., Shibutani S.T., Miyahara M.S.H., Tsuboi H., Yahara M., Yoshimura A., Mayor S., Fujiwara T.K. Membrane molecules mobile even after chemical fixation. Nat. Meth. 2010;7:865–866. PubMed
Vanneste S., Friml J. Auxin: a trigger for change in plant development. Cell. 2009;136:1005–1016. PubMed
Viaene T., Delwiche C.F., Rensing S.A., Friml J. Origin and evolution of PIN auxin transporters in the green lineage. Trends Plant Sci. 2013;18:5–10. PubMed
Vieten A., Vanneste S., Wiśniewska J., Benková E., Benjamins R., Beeckman T., Luschnig C., Friml J. Functional redundancy of pin proteins is accompanied by auxin-dependent cross-regulation of pin expression. Development. 2005;132:4521–4531. PubMed
Vieten A., Sauer M., Brewer P.B., Friml J. Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci. 2007;12:160–168. PubMed
Webster J.D., Miller M.A., DuSold D., Ramos-Vara J. Effects of prolonged formalin fixation on diagnostic immunohistochemistry in domestic animals. J. Histochem. Cytochem. 2009;57:753–761. PubMed PMC
Wiśniewska J., Xu J., Seifertová D., Brewer P.B., Růžička K., Blilou I., Rouquié D., Benková E., Scheres B., Friml J. Polar PIN localization directs auxin flow in plants. Science. 2006;312:883. PubMed
Xi W., Gong X., Yang Q., Yu H., Liou Y.-C. Pin1At regulates PIN1 polar localization and root gravitropism. Nat. Commun. 2016;7:10430. PubMed PMC
Xu J., Scheres B. Dissection of Arabidopsis ADP-RIBOSYLATIONFACTOR 1 function in epidermal cell polarity. Plant Cell. 2005;17:525–536. PubMed PMC
Xu J., Hofhuis H., Heidstra R., Sauer M., Friml J., Scheres B. A molecular framework for plant regeneration. Science. 2006;311:385–388. PubMed
Yang H., Murphy A.S. Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J. 2009;59:179–191. PubMed
Žádníková P., Petrášek J., Marhavý P., Raz V., Vandenbussche F., Ding Z., Schwarzerová K., Morita M.T., Tasaka M., Hejátko J. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development. 2010;137:607–617. PubMed
Zhang J., Nodzyński T., Pěnčík A., Rolčík J., Friml J. PIN phosphorylation is sufficient to mediate pin polarity and direct auxin transport. PNAS. 2010;107:918–922. PubMed PMC
Zourelidou M., Absmanner B., Weller B., Barbosa I.C., Willige B.C., Fastner A., Streit V., Port S.A., Colcombet J., de la Fuente van Bentem S. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. Elife. 2014;3:e02860. PubMed PMC
ER-Localized PIN Carriers: Regulators of Intracellular Auxin Homeostasis
The Nuts and Bolts of PIN Auxin Efflux Carriers
A Functional Study of AUXILIN-LIKE1 and 2, Two Putative Clathrin Uncoating Factors in Arabidopsis