Coexistence of gain-of-function JAK2 germ line mutations with JAK2V617F in polycythemia vera
Language English Country United States Media print-electronic
Document type Letter, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
P01 CA108671
NCI NIH HHS - United States
PubMed
27647865
PubMed Central
PMC5095759
DOI
10.1182/blood-2016-04-711283
PII: S0006-4971(20)34015-5
Knihovny.cz E-resources
- MeSH
- Phenylalanine genetics MeSH
- Janus Kinase 2 genetics MeSH
- Polymorphism, Single Nucleotide MeSH
- Cohort Studies MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Mutation, Missense * MeSH
- DNA Mutational Analysis MeSH
- Polycythemia Vera genetics pathology MeSH
- Amino Acid Substitution MeSH
- Valine genetics MeSH
- Germ-Line Mutation * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Letter MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Phenylalanine MeSH
- JAK2 protein, human MeSH Browser
- Janus Kinase 2 MeSH
- Valine MeSH
Department of Biology Faculty of Medicine and Dentistry Palacky University Olomouc Czech Republic
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic; and
Division of Hematology University of Utah School of Medicine Salt Lake City UT
George E Wahlen Department of Veterans Affairs Medical Center Salt Lake City UT
Human Genome Sequencing Center Baylor College of Medicine Houston TX
See more in PubMed
Tefferi A, Pardanani A. Myeloproliferative neoplasms: a contemporary review. JAMA Oncol. 2015;1(1):97–105. PubMed
Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–2301. PubMed
Schaub FX, Looser R, Li S, et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood. 2010;115(10):2003–2007. PubMed
Wang L, Swierczek SI, Drummond J, et al. Whole-exome sequencing of polycythemia vera revealed novel driver genes and somatic mutation shared by T cells and granulocytes. Leukemia. 2014;28(4):935–938. PubMed PMC
Ortmann CA, Kent DG, Nangalia J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372(7):601–612. PubMed PMC
Nussenzveig RH, Swierczek SI, Jelinek J, et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol. 2007;35(1):32.e1–32.e9. PubMed
Kralovics R, Teo SS, Li S, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006;108(4):1377–1380. PubMed
Wang L, Swierczek SI, Lanikova L, et al. The relationship of JAK2(V617F) and acquired UPD at chromosome 9p in polycythemia vera. Leukemia. 2014;28(4):938–941. PubMed PMC
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–1081. PubMed
Tavtigian SV, Deffenbaugh AM, Yin L, et al. Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet. 2006;43(4):295–305. PubMed PMC
Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30(17):3894–3900. PubMed PMC
Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–362. PubMed
Wallweber HJ, Tam C, Franke Y, Starovasnik MA, Lupardus PJ. Structural basis of recognition of interferon-α receptor by tyrosine kinase 2. Nat Struct Mol Biol. 2014;21(5):443–448. PubMed PMC
Ma L, Clayton JR, Walgren RA, et al. Discovery and characterization of LY2784544, a small-molecule tyrosine kinase inhibitor of JAK2V617F. Blood Cancer J. 2013;3:e109. PubMed PMC
Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–397. PubMed
Etheridge SL, Cosgrove ME, Sangkhae V, et al. A novel activating, germline JAK2 mutation, JAK2R564Q, causes familial essential thrombocytosis. Blood. 2014;123(7):1059–1068. PubMed
Marty C, Saint-Martin C, Pecquet C, et al. Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors. Blood. 2014;123(9):1372–1383. PubMed
Mead AJ, Rugless MJ, Jacobsen SE, Schuh A. Germline JAK2 mutation in a family with hereditary thrombocytosis. N Engl J Med. 2012;366(10):967–969. PubMed
Kapralova K, Horvathova M, Pecquet C, et al. Cooperation of germline JAK2 mutations E846D and R1063H in hereditary erythrocytosis with megakaryocytic atypia. Blood. 2016;128(10):1418–1423. PubMed
Zhao L, Ma Y, Seemann J, Huang LJ. A regulating role of the JAK2 FERM domain in hyperactivation of JAK2(V617F). Biochem J. 2010;426(1):91–98. PubMed PMC
Funakoshi-Tago M, Pelletier S, Moritake H, Parganas E, Ihle JN. Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity. Mol Cell Biol. 2008;28(5):1792–1801. PubMed PMC
Witzig TE, Price-Troska TL, Stenson MJ, Gupta M. Lack of JAK2 activating non-synonymous mutations in diffuse large B-cell tumors: JAK2 deregulation still unexplained. Leuk Lymphoma. 2013;54(2):397–399. PubMed PMC
Hudson AM, Yates T, Li Y, et al. Discrepancies in cancer genomic sequencing highlight opportunities for driver mutation discovery. Cancer Res. 2014;74(22):6390–6396. PubMed PMC
Olcaydu D, Harutyunyan A, Jäger R, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41(4):450–454. PubMed
Pearse RN, Feinman R, Ravetch JV. Characterization of the promoter of the human gene encoding the high-affinity IgG receptor: transcriptional induction by gamma-interferon is mediated through common DNA response elements. Proc Natl Acad Sci USA. 1991;88(24):11305–11309. PubMed PMC
A novel germline hyperactivating JAK2 mutation L604F