Experimental Modeling of Myeloproliferative Neoplasms
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31618985
PubMed Central
PMC6826898
DOI
10.3390/genes10100813
PII: genes10100813
Knihovny.cz E-zdroje
- Klíčová slova
- CALR, JAK2, MPL, MPN (myeloproliferative neoplasms), iPSCs, mice, thrombosis, zebrafish,
- MeSH
- dánio pruhované MeSH
- esenciální trombocytemie genetika MeSH
- fenotyp MeSH
- indukované pluripotentní kmenové buňky metabolismus MeSH
- Janus kinasa 2 genetika MeSH
- kalretikulin genetika MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- mutace MeSH
- myeloproliferativní poruchy genetika patofyziologie MeSH
- myši MeSH
- nádory genetika MeSH
- polycythaemia vera genetika MeSH
- primární myelofibróza genetika MeSH
- receptory thrombopoetinu genetika MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- Janus kinasa 2 MeSH
- kalretikulin MeSH
- receptory thrombopoetinu MeSH
Myeloproliferative neoplasms (MPN) are genetically very complex and heterogeneous diseases in which the acquisition of a somatic driver mutation triggers three main myeloid cytokine receptors, and phenotypically expresses as polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The course of the diseases may be influenced by germline predispositions, modifying mutations, their order of acquisition and environmental factors such as aging and inflammation. Deciphering these contributory elements, their mutual interrelationships, and their contribution to MPN pathogenesis brings important insights into the diseases. Animal models (mainly mouse and zebrafish) have already significantly contributed to understanding the role of several acquired and germline mutations in MPN oncogenic signaling. Novel technologies such as induced pluripotent stem cells (iPSCs) and precise genome editing (using CRISPR/Cas9) contribute to the emerging understanding of MPN pathogenesis and clonal architecture, and form a convenient platform for evaluating drug efficacy. In this overview, the genetic landscape of MPN is briefly described, with an attempt to cover the main discoveries of the last 15 years. Mouse and zebrafish models of the driver mutations are discussed and followed by a review of recent progress in modeling MPN with patient-derived iPSCs and CRISPR/Cas9 gene editing.
Zobrazit více v PubMed
Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6:372–375. doi: 10.1182/blood.V6.4.372.372. PubMed DOI
Vainchenker W., Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–679. doi: 10.1182/blood-2016-10-695940. PubMed DOI
Skoda R., Duek A., Grisouard J. Pathogenesis of myeloproliferative neoplasms. Exp. Hematol. 2015;43:599–608. doi: 10.1016/j.exphem.2015.06.007. PubMed DOI
Grinfeld J., Nangalia J., Green A. Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms. Haematologica. 2017;102:7–17. doi: 10.3324/haematol.2014.113845. PubMed DOI PMC
Rumi E., Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017;129:680–692. doi: 10.1182/blood-2016-10-695957. PubMed DOI PMC
Harutyunyan A., Kralovics R. Role of germline genetic factors in MPN pathogenesis. Hematol. Oncol. Clin. N. Am. 2012;26:1037–1051. doi: 10.1016/j.hoc.2012.07.005. PubMed DOI
Hasselbalch H., Bjørn M. MPNs as Inflammatory Diseases: The Evidence, Consequences, and Perspectives. Mediat. Inflamm. 2015;2015:102476. doi: 10.1155/2015/102476. PubMed DOI PMC
Tefferi A. Myeloproliferative neoplasms: A decade of discoveries and treatment advances. Am. J. Hematol. 2016;91:50–58. doi: 10.1002/ajh.24221. PubMed DOI
Kralovics R., Teo S.S., Li S., Theocharides A., Buser A., Tichelli A., Skoda R. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006;108:1377–1380. doi: 10.1182/blood-2005-11-009605. PubMed DOI
Hermouet S., Bigot-Corbel E., Gardie B. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation. Mediat. Inflamm. 2015;2015:145293. doi: 10.1155/2015/145293. PubMed DOI PMC
Maxson J., Gotlib J., Pollyea D., Fleischman A., Agarwal A., Eide C., Bottomly D., Wilmot B., McWeeney S., Tognon C., et al. Oncogenic CSF3R Mutations in Chronic Neutrophilic Leukemia and Atypical CML. N. Engl. J. Med. 2013;368:1781–1790. doi: 10.1056/NEJMoa1214514. PubMed DOI PMC
Olcaydu D., Harutyunyan A., Jäger R., Berg T., Gisslinger B., Pabinger I., Gisslinger H., Kralovics R. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet. 2009;41:450–454. doi: 10.1038/ng.341. PubMed DOI
Jones A., Chase A., Silver R., Oscier D., Zoi K., Wang L., Cario H., Pahl H., Collins A., Reiter A., et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat. Genet. 2009;41:446–449. doi: 10.1038/ng.334. PubMed DOI PMC
Kilpivaara O., Mukherjee S., Schram A., Wadleigh M., Mullally A., Ebert B., Bass A., Marubayashi S., Heguy A., Garcia-Manero G., et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat. Genet. 2009;41:455–459. doi: 10.1038/ng.342. PubMed DOI PMC
Vilaine M., Olcaydu D., Harutyunyan A., Bergeman J., Tiab M., Ramée J.-F., Jian-Min C., Kralovics R., Hermouet S. Homologous recombination of wild-type JAK2, a novel early step in the development of myeloproliferative neoplasm. Blood. 2011;118:6468–6470. doi: 10.1182/blood-2011-08-372813. PubMed DOI
James C., Ugo V., Le Couédic J.-P., Staerk J., Delhommeau F., Lacout C., Garçon L., Raslova H., Berger R., Bennaceur-Griscelli A., et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–1148. doi: 10.1038/nature03546. PubMed DOI
Levine R., Wadleigh M., Cools J., Ebert B., Wernig G., Huntly B., Boggon T., Wlodarska I., Clark J., Moore S., et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–397. doi: 10.1016/j.ccr.2005.03.023. PubMed DOI
Scott L. The JAK2 exon 12 mutations: A comprehensive review. Am. J. Hematol. 2011;86:668–676. doi: 10.1002/ajh.22063. PubMed DOI
Mead A., Rugless M., Jacobsen S., Schuh A. Germline JAK2 mutation in a family with hereditary thrombocytosis. N. Engl. J. Med. 2012;366:967–969. doi: 10.1056/NEJMc1200349. PubMed DOI
Etheridge S.L., Cosgrove M., Sangkhae V., Corbo L., Roh M., Seeliger M., Chan E., Hitchcock I. A novel activating, germline JAK2 mutation, JAK2R564Q, causes familial essential thrombocytosis. Blood. 2013;123:1059–1068. doi: 10.1182/blood-2012-12-473777. PubMed DOI
Marty C., Saint Martin C., Pecquet C., Grosjean S., Saliba J., Mouton C., Leroy E., Harutyunyan A., Abgrall J.-F., Favier R., et al. Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors. Blood. 2014;123:1372–1383. doi: 10.1182/blood-2013-05-504555. PubMed DOI
Lanikova L., Babosova O., Swierczek S., Wang L., Wheeler D., Divoky V., Korinek V., Prchal J. Coexistence of gain-of-function JAK2 germline mutations with JAK2V617F in polycythemia vera. Blood. 2016;128:2266–2270. doi: 10.1182/blood-2016-04-711283. PubMed DOI PMC
Mambet C., Babosova O., Defour J.-P., Leroy E., Necula L., Stanca O., Tatic A., Berbec N., Coriu D., Belickova M., et al. Co-occurring JAK2 V617F and R1063H mutations increase JAK2 signaling and neutrophilia in MPN patients. Blood. 2018;132:2695–2699. doi: 10.1182/blood-2018-04-843060. PubMed DOI
Kapralova K., Horvathova M., Pecquet C., Fialova Kucerova J., Pospíšilová D., Leroy E., Kralova B., Milosevic Feenstra J., Schischlik F., Kralovics R., et al. Cooperation of germline JAK2 mutations E846D and R1063H in hereditary erythrocytosis with megakaryocytic atypia. Blood. 2016;128:1418–1423. doi: 10.1182/blood-2016-02-698951. PubMed DOI
Lundberg P., Takizawa H., Kubovcakova L., Guo G., Hao-Shen H., Dirnhofer S., Orkin S., Manz M., Skoda R. Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2-V617F. J. Exp. Med. 2014;211:2213–2230. doi: 10.1084/jem.20131371. PubMed DOI PMC
Anand S., Stedham F., Beer P., Gudgin E., Ortmann C., Bench A., Erber W., Green A., Huntly B. Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood. 2011;118:177–181. doi: 10.1182/blood-2010-12-327593. PubMed DOI
James C., Mazurier F., Dupont S., Chaligne R., Lamrissi-Garcia I., Tulliez M., Lippert E., Mahon F.-X., Pasquet J., Etienne G., et al. The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood. 2008;112:2429–2438. doi: 10.1182/blood-2008-02-137877. PubMed DOI
Larsen T., Christensen J., Hasselbalch H., Pallisgaard N. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br. J. Haematol. 2007;136:745–751. doi: 10.1111/j.1365-2141.2007.06497.x. PubMed DOI
Mullally A., Lane S., Ball B., Megerdichian C., Okabe R., Al-Shahrour F., Paktinat M., Haydu E., Housman E., Lord A., et al. Physiological Jak2V617F Expression Causes a Lethal Myeloproliferative Neoplasm with Differential Effects on Hematopoietic Stem and Progenitor Cells. Cancer Cell. 2010;17:584–596. doi: 10.1016/j.ccr.2010.05.015. PubMed DOI PMC
Li J., Kent D., Godfrey A., Manning H., Nangalia J., Aziz A., Chen E., Saeb-Parsy K., Fink J., Sneade R., et al. JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood. 2014;123:3139–3151. doi: 10.1182/blood-2013-06-510222. PubMed DOI
Kent D., Li J., Tanna H., Fink J., Kirschner K., Pask D., Silber Y., Hamilton T., Sneade R., Simons B., et al. Self-Renewal of Single Mouse Hematopoietic Stem Cells Is Reduced by JAK2V617F Without Compromising Progenitor Cell Expansion. PLoS Biol. 2013;11:e1001576. doi: 10.1371/journal.pbio.1001576. PubMed DOI PMC
McKerrell T., Park N., Moreno T., Grove C., Ponstingl H., Stephens J., Crawley C., Craig J., Scott M., Hodkinson C., et al. Leukemia-Associated Somatic Mutations Drive Distinct Patterns of Age-Related Clonal Hemopoiesis. Cell Rep. 2015;10:1239–1245. doi: 10.1016/j.celrep.2015.02.005. PubMed DOI PMC
Genovese G., Kähler A., Handsaker R., Lindberg J., Rose S., Bakhoum S., Chambert K., Mick E., Neale B., Fromer M., et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N. Engl. J. Med. 2014;371:2477–2487. doi: 10.1056/NEJMoa1409405. PubMed DOI PMC
Jaiswal S., Libby P. Clonal haematopoiesis: Connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 2019 doi: 10.1038/s41569-019-0247-5. PubMed DOI PMC
Prchal J. The Significance of JAK2-Positive Test Results in a Healthy Patient. [(accessed on 1 August 2019)];2019 In ASH Clinical News, American Society of Hematology. Available online: https://www.ashclinicalnews.org.
Sun J., Ramos A., Chapman B., Johnnidis J., Le L., Ho Y.-J., Klein A., Hofmann O., Camargo F. Clonal dynamics of native haematopoiesis. Nature. 2014;514:322–327. doi: 10.1038/nature13824. PubMed DOI PMC
Ding J., Komatsu H., Wakita A., Kato-Uranishi M., Ito M., Satoh A., Tsuboi K., Nitta M., Miyazaki H., Iida S., et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood. 2004;103:4198–4200. doi: 10.1182/blood-2003-10-3471. PubMed DOI
Beer P., Campbell P., Scott L., Bench A., Erber W., Bareford D., Wilkins B., Reilly J., Hasselbalch H., Bowman R., et al. MPL mutations in myeloproliferative disorders: Analysis of the PT-1 cohort. Blood. 2008;112:141–149. doi: 10.1182/blood-2008-01-131664. PubMed DOI
Pikman Y., Lee B., Mercher T., McDowell E., Ebert B., Gozo M., Cuker A., Wernig G., Moore S., Galinsky I., et al. MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia. PLoS Med. 2006;3:e270. doi: 10.1371/journal.pmed.0030270. PubMed DOI PMC
Pardanani A., Lasho T., McClure R., Lacy M., Tefferi A. Discordant distribution of JAK2V617F mutation in siblings with familial myeloproliferative disorders. Blood. 2006;107:4572–4573. doi: 10.1182/blood-2005-12-4988. PubMed DOI
Staerk J., Defour J.-P., Pecquet C., Leroy E., Poirel H., Brett I., Itaya M., Smith S., Vainchenker W., Constantinescu S. Orientation-specific signalling by thrombopoietin receptor dimers. EMBO J. 2011;30:4398–4413. doi: 10.1038/emboj.2011.315. PubMed DOI PMC
Constantinescu S., Keren T., Socolovsky M., Nam H., Henis Y., Lodish H., Constantinescu S.N., Keren T., Socolovsky M., Nam H., et al. Ligand-independent oligomerization of cell-surface erythropoietin receptor is mediated by the transmembrane domain. Proc. Natl. Acad. Sci. USA. 2001;98:4379–4384. doi: 10.1073/pnas.081069198. PubMed DOI PMC
Pecquet C., Chachoua I., Roy A., Balligand T., Vertenoeil G., Leroy E., Albu R.-I., Defour J.-P., Nivarthi H., Hug E., et al. Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood. 2019;133:2669–2681. doi: 10.1182/blood-2018-09-874578. PubMed DOI
Pecquet C., Balligand T., Chachoua I., Roy A., Vertenoeil G., Colau D., Fertig E., Marty C., Nivarthi H., Defour J.-P., et al. Secreted Mutant Calreticulins As Rogue Cytokines Trigger Thrombopoietin Receptor Activation Specifically in CALR Mutated Cells: Perspectives for MPN Therapy. Blood. 2018;132:4. doi: 10.1182/blood-2018-99-118348. PubMed DOI
Scott L., Tong W., Levine R., Scott M., Beer P., Stratton M., Andrew Futreal P., Erber W., McMullin M., Harrison C., et al. JAK2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis. N. Engl. J. Med. 2007;356:459–468. doi: 10.1056/NEJMoa065202. PubMed DOI PMC
Kralovics R., Guan Y., Prchal J. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp. Hematol. 2002;30:229–236. doi: 10.1016/S0301-472X(01)00789-5. PubMed DOI
Scott L., Scott M., Campbell P., Green A. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood. 2006;108:2435–2437. doi: 10.1182/blood-2006-04-018259. PubMed DOI
Tiedt R., Hao-Shen H., Sobas M., Looser R., Dirnhofer S., Schwaller J., Skoda R. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111:3931–3940. doi: 10.1182/blood-2007-08-107748. PubMed DOI
Vannucchi A., Antonioli E., Guglielmelli P., Rambaldi A., Barosi G., Marchioli R., Marfisi R., Finazzi G., Guerini V., Fabris F., et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110:840–846. doi: 10.1182/blood-2006-12-064287. PubMed DOI
Yao H., Ma Y., Hong Z., Zhao L., Monaghan A.S., Hu M., Huang L.-S. Activating JAK2 mutants reveal cytokine receptor coupling differences that impact outcomes in myeloproliferative neoplasm. Leukemia. 2017;31:2122–2131. doi: 10.1038/leu.2017.1. PubMed DOI PMC
Chen E., Beer P., Godfrey A., Ortmann C., Li J., Costa-Pereira A., Ingle C., Dermitzakis E., Campbell P., Green A. Distinct Clinical Phenotypes Associated with JAK2V617F Reflect Differential STAT1 Signaling. Cancer Cell. 2010;18:524–535. doi: 10.1016/j.ccr.2010.10.013. PubMed DOI PMC
Ortmann C., Kent D., Nangalia J., Silber Y., Wedge D., Grinfeld J., Baxter E., Massie C., Papaemmanuil E., Menon S., et al. Effect of Mutation Order on Myeloproliferative Neoplasms. N. Engl. J. Med. 2015;372:601–612. doi: 10.1056/NEJMoa1412098. PubMed DOI PMC
Lieschke G., Currie P. Animal models of human disease: Zebrafish swim into view. Nat. Rev. Genet. 2007;8:353–367. doi: 10.1038/nrg2091. PubMed DOI
Baeten J., de Jong J. Genetic Models of Leukemia in Zebrafish. Front. Cell Dev. Biol. 2017;6:115. doi: 10.3389/fcell.2018.00115. PubMed DOI PMC
Ma A., Fan A., Ward A., Liongue C., Lewis R., Cheng S., Chan P., Yip S.-F., Liang R., Leung A. A novel zebrafish jak2aV581F model shared features of human JAK2V617F polycythemia vera. Exp. Hematol. 2009;37:1379–1386. doi: 10.1016/j.exphem.2009.08.008. PubMed DOI
Lim K.-H., Chang Y.C., Chiang Y.H., Lin H.C., Chang C.-Y., Lin C.S., Huang L., Wang W.T., Chen G.-S., Chou W.C., et al. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish. Blood Cancer J. 2016;6:e481. doi: 10.1038/bcj.2016.83. PubMed DOI PMC
Gjini E., Jing C.-B., Nguyen A., Reyon D., Gans E., Kesarsing M., Peterson J., Pozdnyakova O., Rodig S., Mansour M., et al. Disruption of asxl1 results in myeloproliferative neoplasms in zebrafish. Dis. Models Mech. 2019;12:dmm035790. doi: 10.1242/dmm.035790. PubMed DOI PMC
Dunbar A., Nazir A., Levine R. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs) Curr. Protoc. Pharmacol. 2017;77:11–19. PubMed PMC
Bumm T., Elsea C., Corbin A., Loriaux M., Sherbenou D., Wood L., Deininger J., Silver R., Druker B., Deininger M. Characterization of Murine JAK2V617F-Positive Myeloproliferative Disease. Cancer Res. 2007;66:11156–11165. doi: 10.1158/0008-5472.CAN-06-2210. PubMed DOI
Lacout C., Pisani D., Tulliez M., Moreau-Gachelin F., Vainchenker W., Villeval J.-L., Lacout C., Pisani D.F., Tulliez M., Gachelin F.M., et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108:1652–1660. doi: 10.1182/blood-2006-02-002030. PubMed DOI
Wernig G., Mercher T., Okabe R., Levine R., Lee B., Gilliland G. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107:4274–4281. doi: 10.1182/blood-2005-12-4824. PubMed DOI PMC
Zaleskas V., Krause D., Lazarides K., Patel N., Hu Y., Li S., Van Etten R. Molecular Pathogenesis and Therapy of Polycythemia Induced in Mice by JAK2 V617F. PLoS ONE. 2006;1:e18. doi: 10.1371/journal.pone.0000018. PubMed DOI PMC
Shide K., Shimoda H., Kumano T., Karube K., Kameda T., Takenaka K., Oku S., Abe H., Katayose K., Kubuki Y., et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia. 2008;22:87–95. doi: 10.1038/sj.leu.2405043. PubMed DOI
Xing S., Wanting T., Zhao W., Ma J., Wang S., Xu X., Li Q., Fu X., Xu M., Zhao Z. Transgenic expression of JAK2(V617F) causes myeloproliferative disorders in mice. Blood. 2008;111:5109–5117. doi: 10.1182/blood-2007-05-091579. PubMed DOI PMC
Li J., Spensberger D., Sook Ahn J., Anand S., Beer P., Ghevaert C., Chen E., Forrai A., Scott L., Ferreira R., et al. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood. 2010;116:1528–1538. doi: 10.1182/blood-2009-12-259747. PubMed DOI PMC
Lu X., Levine R., Tong W., Wernig G., Pikman Y., Zarnegar S., Gilliland G., Lodish H. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc. Natl. Acad. Sci. USA. 2006;102:18962–18967. doi: 10.1073/pnas.0509714102. PubMed DOI PMC
Kota J., Caceres N., Constantinescu S. Aberrant signal transduction pathways in myeloproliferative neoplasms. Leukemia. 2008;22:1828–1840. doi: 10.1038/leu.2008.236. PubMed DOI
Ebie A., Fleming K. Dimerization of the Erythropoietin Receptor Transmembrane Domain in Micelles. J. Mol. Biol. 2007;366:517–524. doi: 10.1016/j.jmb.2006.11.035. PubMed DOI
Divoky V., Song J., Horvathova M., Kralova B., Bruchova Votavova H., Prchal J., Yoon D. Delayed Hemoglobin Switching and Perinatal Neocytolysis in Mice with Gain-of-Function Erythropoietin Receptor. J. Mol. Med. 2015;94:597–608. doi: 10.1007/s00109-015-1375-y. PubMed DOI PMC
Chen E., Schneider R., Breyfogle L., Rosen E., Poveromo L., Elf S., Ko A., Brumme K., Levine R., Ebert B., et al. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Blood. 2014;125:327–335. doi: 10.1182/blood-2014-04-567024. PubMed DOI PMC
Kameda T., Shide K., Yamaji T., Kamiunten A., Sekine M., Taniguchi Y., Hidaka T., Kubuki Y., Shimoda H., Marutsuka K., et al. Loss of TET2 has dual roles in murine myeloproliferative neoplasms: Disease sustainer and disease accelerator. Blood. 2014;125:304–315. doi: 10.1182/blood-2014-04-555508. PubMed DOI
Falanga A., Marchetti M. Thrombosis in Myeloproliferative Neoplasms. Semin. Thromb. Hemost. 2014;40:348–358. PubMed
Vannucchi A., Guglielmelli P. JAK2 Mutation-Related Disease and Thrombosis. Semin. Thromb. Hemost. 2013;39:496–506. PubMed
Wang W., Liu W., Fidler T., Wang Y., Tang Y., Woods B., Welch C., Cai B., Silvestre-Roig C., Ai D., et al. Macrophage Inflammation, Erythrophagocytosis, and Accelerated Atherosclerosis in Jak2V617F Mice. Circ. Res. 2018;123:e35–e47. doi: 10.1161/CIRCRESAHA.118.313283. PubMed DOI PMC
Zhao B., Keerthivasan G., Mei Y., Yang J., McElherne J., Wong P., Doench J., Feng G., Root D., Ji P. Targeted shRNA screening identified critical roles of pleckstrin-2 in erythropoiesis. Haematologica. 2014;99:1157–1167. doi: 10.3324/haematol.2014.105809. PubMed DOI PMC
Zhao B., Mei Y., Cao L., Zhang J., Sumagin R., Yang J., Gao J., Schipma M., Wang Y., Thorsheim C., et al. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J. Clin. Investig. 2017;128:125–140. doi: 10.1172/JCI94518. PubMed DOI PMC
Wolach O., Sellar R., Martinod K., Cherpokova D., McConkey M., Chappell R., Silver A., Adams D., Castellano C., Schneider R., et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med. 2018;10:eaan8292. doi: 10.1126/scitranslmed.aan8292. PubMed DOI PMC
Edelmann B., Gupta N., Schnoeder T., Oelschlegel A., Shahzad K., Goldschmidt J., Philipsen L., Weinert S., Ghosh A., Saalfeld F., et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J. Clin. Investig. 2018;128:4359–4371. doi: 10.1172/JCI90312. PubMed DOI PMC
Teofili L., Martini M., Iachininoto M., Capodimonti S., Nuzzolo E., Torti L., Cenci T., Larocca L., Leone G. Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms. Blood. 2011;117:2700–2707. doi: 10.1182/blood-2010-07-297598. PubMed DOI
Rosti V., Villani L., Riboni R., Poletto V., Bonetti E., Tozzi L., Bergamaschi G., Catarsi P., Dallera E., Novara F., et al. Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation. Blood. 2012;121:360–368. doi: 10.1182/blood-2012-01-404889. PubMed DOI
Guy A., Gourdou-Latyszenok V., Lay N., Peghaire C., Kilani B., Dias J., Duplaa C., Renault M.-A., Denis C., Villeval J., et al. Vascular endothelial cell expression of JAK2V617F is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica. 2018;104:70–81. doi: 10.3324/haematol.2018.195321. PubMed DOI PMC
Cocault L., Bouscary D., Le Bousse Kerdiles C., Clay D., Picard F., Gisselbrecht S., Souyri M. Ectopic expression of murine TPO receptor (c-Mpl) in mice is pathogenic and induces erythroblastic proliferation. Blood. 1996;88:1656–1665. doi: 10.1182/blood.V88.5.1656.1656. PubMed DOI
Villeval J.-L., Cohen-Solal K., Tulliez M., Giraudier S., Guichard J., Burstein S.A., Cramer E., Vainchenker W., Wendling F. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood. 1998;90:4369–4383. doi: 10.1182/blood.V90.11.4369. PubMed DOI
Bhagwat N., Koppikar P., Keller M., Marubayashi S., Shank K., Rampal R., Qi J., Kleppe M., Patel H., Shah S., et al. Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms. Blood. 2014;123:2075–2083. doi: 10.1182/blood-2014-01-547760. PubMed DOI PMC
Sangkhae V., Etheridge S., Kaushansky K., Hitchcock I. The thrombopoietin receptor, MPL, is critical for development of a JAK2V(617)F-induced myeloproliferative neoplasm. Blood. 2014;124:3956–3963. doi: 10.1182/blood-2014-07-587238. PubMed DOI PMC
Klampfl T., Gisslinger H., Harutyunyan A., Nivarthi H., Rumi E., Milosevic Feenstra J., Them N., Berg T., Gisslinger B., Pietra D., et al. Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. N. Engl. J. Med. 2013;369:2379–2390. doi: 10.1056/NEJMoa1311347. PubMed DOI
Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI
Ye Z., Zhan H., Mali P., Dowey S., Williams D., Jang Y., Dang C., Spivak J., Moliterno A., Cheng L. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood. 2009;114:5473–5480. doi: 10.1182/blood-2009-04-217406. PubMed DOI PMC
Papapetrou E. Modeling myeloid malignancies with patient-derived iPSCs. Exp. Hematol. 2018;71:77–84. doi: 10.1016/j.exphem.2018.11.006. PubMed DOI PMC
Smith C., Abalde-Atristain L., He C., Brodsky R., Braunstein E., Chaudhari P., Jang Y., Cheng L., Ye Z. Efficient and Allele-Specific Genome Editing of Disease Loci in Human iPSCs. Mol. Ther. 2014;23:570–577. doi: 10.1038/mt.2014.226. PubMed DOI PMC
Fu Y., Foden J., Khayter C., Maeder M., Reyon D., Joung J., Sander J. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013;31:822–826. doi: 10.1038/nbt.2623. PubMed DOI PMC
Smith C., Gore A., Yan W., Abalde-Atristain L., Li Z., He C., Wang Y., Brodsky R., Zhang K., Cheng L., et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell. 2014;15:12–13. doi: 10.1016/j.stem.2014.06.011. PubMed DOI PMC
Tian L., Piterkova L., Wang L., Ye Z., Cheng L., Wheeler D.A., Hakonarson H., Prchal J. Whole Genome Sequencing of Four CD34+-Derived iPSC Polycythemia Vera Clones from a Single Female. Blood. 2012;120:1755. doi: 10.1182/blood.V120.21.1755.1755. DOI
Saliba J., Hamidi S., Lenglet G., Langlois T., Yin J., Cabagnols X., Secardin L., Legrand C., Galy A., Opolon P., et al. Heterozygous and Homozygous JAK2V617F States Modeled by Induced Pluripotent Stem Cells from Myeloproliferative Neoplasm Patients. PLoS ONE. 2013;8:e74257. doi: 10.1371/journal.pone.0074257. PubMed DOI PMC
Ye Z., Liu C., Lanikova L., Dowey S., He C., Huang X., Brodsky R., Spivak J., Prchal J., Cheng L. Differential Sensitivity to JAK Inhibitory Drugs by Isogenic Human Erythroblasts and Hematopoietic Progenitors Generated from Patient-Specific Induced Pluripotent Stem Cells. Stem Cells. 2014;32:269–278. doi: 10.1002/stem.1545. PubMed DOI PMC
Verstovsek S., Kantarjian H., Mesa R., Pardanani A., Cortes-Franco J., Thomas D.A., Estrov Z., Fridman J., Bradley E., Erickson-Viitanen S., et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N. Engl. J. Med. 2010;363:1117–1127. doi: 10.1056/NEJMoa1002028. PubMed DOI PMC
Verstovsek S., Kantarjian H., Estrov Z., Cortes J., Thomas D., Kadia T., Pierce S., Jabbour E., Borthakur G., Rumi E., et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: Survival advantage in comparison to matched historical controls. Blood. 2012;120:1202–1209. doi: 10.1182/blood-2012-02-414631. PubMed DOI PMC
Senquan L., Williams D., Moliterno A., Spivak J., Huang H., Gao Y., Ye Z., Cheng L. Generation, Characterization and Genetic Modification of Human iPSCs Containing Calr, MPL and JAK2 Mutations Found in MPN Patients. Blood. 2016;128:3139. doi: 10.1182/blood.V128.22.3139.3139. DOI
Liu S., Ye Z., Gao Y., He C., Rowley D., Moliterno A., Spivak J., Huang H., Cheng L. Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene. Stem Cell Res. 2017;18:57–59. doi: 10.1016/j.scr.2016.12.012. PubMed DOI
Wang W., Wang T., Kotini A., Iancu-Rubin C., Hoffman R., Papapetrou E. Modeling Calreticulin-Mutant Myeloproliferative Neoplasms with Isogenic Induced Pluripotent Stem Cells. Blood. 2018;132:4319. doi: 10.1182/blood-2018-99-111512. DOI
Štetka J., Vyhlidalova P., Lanikova L., Koralkova P., Gursky J., Hlusi A., Flodr P., Hubackova S., Bartek J., Hodny Z., et al. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene. 2019;38:1. doi: 10.1038/s41388-019-0813-7. PubMed DOI PMC