Experimental Modeling of Myeloproliferative Neoplasms

. 2019 Oct 15 ; 10 (10) : . [epub] 20191015

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31618985

Myeloproliferative neoplasms (MPN) are genetically very complex and heterogeneous diseases in which the acquisition of a somatic driver mutation triggers three main myeloid cytokine receptors, and phenotypically expresses as polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The course of the diseases may be influenced by germline predispositions, modifying mutations, their order of acquisition and environmental factors such as aging and inflammation. Deciphering these contributory elements, their mutual interrelationships, and their contribution to MPN pathogenesis brings important insights into the diseases. Animal models (mainly mouse and zebrafish) have already significantly contributed to understanding the role of several acquired and germline mutations in MPN oncogenic signaling. Novel technologies such as induced pluripotent stem cells (iPSCs) and precise genome editing (using CRISPR/Cas9) contribute to the emerging understanding of MPN pathogenesis and clonal architecture, and form a convenient platform for evaluating drug efficacy. In this overview, the genetic landscape of MPN is briefly described, with an attempt to cover the main discoveries of the last 15 years. Mouse and zebrafish models of the driver mutations are discussed and followed by a review of recent progress in modeling MPN with patient-derived iPSCs and CRISPR/Cas9 gene editing.

Zobrazit více v PubMed

Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6:372–375. doi: 10.1182/blood.V6.4.372.372. PubMed DOI

Vainchenker W., Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–679. doi: 10.1182/blood-2016-10-695940. PubMed DOI

Skoda R., Duek A., Grisouard J. Pathogenesis of myeloproliferative neoplasms. Exp. Hematol. 2015;43:599–608. doi: 10.1016/j.exphem.2015.06.007. PubMed DOI

Grinfeld J., Nangalia J., Green A. Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms. Haematologica. 2017;102:7–17. doi: 10.3324/haematol.2014.113845. PubMed DOI PMC

Rumi E., Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017;129:680–692. doi: 10.1182/blood-2016-10-695957. PubMed DOI PMC

Harutyunyan A., Kralovics R. Role of germline genetic factors in MPN pathogenesis. Hematol. Oncol. Clin. N. Am. 2012;26:1037–1051. doi: 10.1016/j.hoc.2012.07.005. PubMed DOI

Hasselbalch H., Bjørn M. MPNs as Inflammatory Diseases: The Evidence, Consequences, and Perspectives. Mediat. Inflamm. 2015;2015:102476. doi: 10.1155/2015/102476. PubMed DOI PMC

Tefferi A. Myeloproliferative neoplasms: A decade of discoveries and treatment advances. Am. J. Hematol. 2016;91:50–58. doi: 10.1002/ajh.24221. PubMed DOI

Kralovics R., Teo S.S., Li S., Theocharides A., Buser A., Tichelli A., Skoda R. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006;108:1377–1380. doi: 10.1182/blood-2005-11-009605. PubMed DOI

Hermouet S., Bigot-Corbel E., Gardie B. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation. Mediat. Inflamm. 2015;2015:145293. doi: 10.1155/2015/145293. PubMed DOI PMC

Maxson J., Gotlib J., Pollyea D., Fleischman A., Agarwal A., Eide C., Bottomly D., Wilmot B., McWeeney S., Tognon C., et al. Oncogenic CSF3R Mutations in Chronic Neutrophilic Leukemia and Atypical CML. N. Engl. J. Med. 2013;368:1781–1790. doi: 10.1056/NEJMoa1214514. PubMed DOI PMC

Olcaydu D., Harutyunyan A., Jäger R., Berg T., Gisslinger B., Pabinger I., Gisslinger H., Kralovics R. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet. 2009;41:450–454. doi: 10.1038/ng.341. PubMed DOI

Jones A., Chase A., Silver R., Oscier D., Zoi K., Wang L., Cario H., Pahl H., Collins A., Reiter A., et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat. Genet. 2009;41:446–449. doi: 10.1038/ng.334. PubMed DOI PMC

Kilpivaara O., Mukherjee S., Schram A., Wadleigh M., Mullally A., Ebert B., Bass A., Marubayashi S., Heguy A., Garcia-Manero G., et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat. Genet. 2009;41:455–459. doi: 10.1038/ng.342. PubMed DOI PMC

Vilaine M., Olcaydu D., Harutyunyan A., Bergeman J., Tiab M., Ramée J.-F., Jian-Min C., Kralovics R., Hermouet S. Homologous recombination of wild-type JAK2, a novel early step in the development of myeloproliferative neoplasm. Blood. 2011;118:6468–6470. doi: 10.1182/blood-2011-08-372813. PubMed DOI

James C., Ugo V., Le Couédic J.-P., Staerk J., Delhommeau F., Lacout C., Garçon L., Raslova H., Berger R., Bennaceur-Griscelli A., et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–1148. doi: 10.1038/nature03546. PubMed DOI

Levine R., Wadleigh M., Cools J., Ebert B., Wernig G., Huntly B., Boggon T., Wlodarska I., Clark J., Moore S., et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–397. doi: 10.1016/j.ccr.2005.03.023. PubMed DOI

Scott L. The JAK2 exon 12 mutations: A comprehensive review. Am. J. Hematol. 2011;86:668–676. doi: 10.1002/ajh.22063. PubMed DOI

Mead A., Rugless M., Jacobsen S., Schuh A. Germline JAK2 mutation in a family with hereditary thrombocytosis. N. Engl. J. Med. 2012;366:967–969. doi: 10.1056/NEJMc1200349. PubMed DOI

Etheridge S.L., Cosgrove M., Sangkhae V., Corbo L., Roh M., Seeliger M., Chan E., Hitchcock I. A novel activating, germline JAK2 mutation, JAK2R564Q, causes familial essential thrombocytosis. Blood. 2013;123:1059–1068. doi: 10.1182/blood-2012-12-473777. PubMed DOI

Marty C., Saint Martin C., Pecquet C., Grosjean S., Saliba J., Mouton C., Leroy E., Harutyunyan A., Abgrall J.-F., Favier R., et al. Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors. Blood. 2014;123:1372–1383. doi: 10.1182/blood-2013-05-504555. PubMed DOI

Lanikova L., Babosova O., Swierczek S., Wang L., Wheeler D., Divoky V., Korinek V., Prchal J. Coexistence of gain-of-function JAK2 germline mutations with JAK2V617F in polycythemia vera. Blood. 2016;128:2266–2270. doi: 10.1182/blood-2016-04-711283. PubMed DOI PMC

Mambet C., Babosova O., Defour J.-P., Leroy E., Necula L., Stanca O., Tatic A., Berbec N., Coriu D., Belickova M., et al. Co-occurring JAK2 V617F and R1063H mutations increase JAK2 signaling and neutrophilia in MPN patients. Blood. 2018;132:2695–2699. doi: 10.1182/blood-2018-04-843060. PubMed DOI

Kapralova K., Horvathova M., Pecquet C., Fialova Kucerova J., Pospíšilová D., Leroy E., Kralova B., Milosevic Feenstra J., Schischlik F., Kralovics R., et al. Cooperation of germline JAK2 mutations E846D and R1063H in hereditary erythrocytosis with megakaryocytic atypia. Blood. 2016;128:1418–1423. doi: 10.1182/blood-2016-02-698951. PubMed DOI

Lundberg P., Takizawa H., Kubovcakova L., Guo G., Hao-Shen H., Dirnhofer S., Orkin S., Manz M., Skoda R. Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2-V617F. J. Exp. Med. 2014;211:2213–2230. doi: 10.1084/jem.20131371. PubMed DOI PMC

Anand S., Stedham F., Beer P., Gudgin E., Ortmann C., Bench A., Erber W., Green A., Huntly B. Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood. 2011;118:177–181. doi: 10.1182/blood-2010-12-327593. PubMed DOI

James C., Mazurier F., Dupont S., Chaligne R., Lamrissi-Garcia I., Tulliez M., Lippert E., Mahon F.-X., Pasquet J., Etienne G., et al. The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood. 2008;112:2429–2438. doi: 10.1182/blood-2008-02-137877. PubMed DOI

Larsen T., Christensen J., Hasselbalch H., Pallisgaard N. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br. J. Haematol. 2007;136:745–751. doi: 10.1111/j.1365-2141.2007.06497.x. PubMed DOI

Mullally A., Lane S., Ball B., Megerdichian C., Okabe R., Al-Shahrour F., Paktinat M., Haydu E., Housman E., Lord A., et al. Physiological Jak2V617F Expression Causes a Lethal Myeloproliferative Neoplasm with Differential Effects on Hematopoietic Stem and Progenitor Cells. Cancer Cell. 2010;17:584–596. doi: 10.1016/j.ccr.2010.05.015. PubMed DOI PMC

Li J., Kent D., Godfrey A., Manning H., Nangalia J., Aziz A., Chen E., Saeb-Parsy K., Fink J., Sneade R., et al. JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood. 2014;123:3139–3151. doi: 10.1182/blood-2013-06-510222. PubMed DOI

Kent D., Li J., Tanna H., Fink J., Kirschner K., Pask D., Silber Y., Hamilton T., Sneade R., Simons B., et al. Self-Renewal of Single Mouse Hematopoietic Stem Cells Is Reduced by JAK2V617F Without Compromising Progenitor Cell Expansion. PLoS Biol. 2013;11:e1001576. doi: 10.1371/journal.pbio.1001576. PubMed DOI PMC

McKerrell T., Park N., Moreno T., Grove C., Ponstingl H., Stephens J., Crawley C., Craig J., Scott M., Hodkinson C., et al. Leukemia-Associated Somatic Mutations Drive Distinct Patterns of Age-Related Clonal Hemopoiesis. Cell Rep. 2015;10:1239–1245. doi: 10.1016/j.celrep.2015.02.005. PubMed DOI PMC

Genovese G., Kähler A., Handsaker R., Lindberg J., Rose S., Bakhoum S., Chambert K., Mick E., Neale B., Fromer M., et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N. Engl. J. Med. 2014;371:2477–2487. doi: 10.1056/NEJMoa1409405. PubMed DOI PMC

Jaiswal S., Libby P. Clonal haematopoiesis: Connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 2019 doi: 10.1038/s41569-019-0247-5. PubMed DOI PMC

Prchal J. The Significance of JAK2-Positive Test Results in a Healthy Patient. [(accessed on 1 August 2019)];2019 In ASH Clinical News, American Society of Hematology. Available online: https://www.ashclinicalnews.org.

Sun J., Ramos A., Chapman B., Johnnidis J., Le L., Ho Y.-J., Klein A., Hofmann O., Camargo F. Clonal dynamics of native haematopoiesis. Nature. 2014;514:322–327. doi: 10.1038/nature13824. PubMed DOI PMC

Ding J., Komatsu H., Wakita A., Kato-Uranishi M., Ito M., Satoh A., Tsuboi K., Nitta M., Miyazaki H., Iida S., et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood. 2004;103:4198–4200. doi: 10.1182/blood-2003-10-3471. PubMed DOI

Beer P., Campbell P., Scott L., Bench A., Erber W., Bareford D., Wilkins B., Reilly J., Hasselbalch H., Bowman R., et al. MPL mutations in myeloproliferative disorders: Analysis of the PT-1 cohort. Blood. 2008;112:141–149. doi: 10.1182/blood-2008-01-131664. PubMed DOI

Pikman Y., Lee B., Mercher T., McDowell E., Ebert B., Gozo M., Cuker A., Wernig G., Moore S., Galinsky I., et al. MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia. PLoS Med. 2006;3:e270. doi: 10.1371/journal.pmed.0030270. PubMed DOI PMC

Pardanani A., Lasho T., McClure R., Lacy M., Tefferi A. Discordant distribution of JAK2V617F mutation in siblings with familial myeloproliferative disorders. Blood. 2006;107:4572–4573. doi: 10.1182/blood-2005-12-4988. PubMed DOI

Staerk J., Defour J.-P., Pecquet C., Leroy E., Poirel H., Brett I., Itaya M., Smith S., Vainchenker W., Constantinescu S. Orientation-specific signalling by thrombopoietin receptor dimers. EMBO J. 2011;30:4398–4413. doi: 10.1038/emboj.2011.315. PubMed DOI PMC

Constantinescu S., Keren T., Socolovsky M., Nam H., Henis Y., Lodish H., Constantinescu S.N., Keren T., Socolovsky M., Nam H., et al. Ligand-independent oligomerization of cell-surface erythropoietin receptor is mediated by the transmembrane domain. Proc. Natl. Acad. Sci. USA. 2001;98:4379–4384. doi: 10.1073/pnas.081069198. PubMed DOI PMC

Pecquet C., Chachoua I., Roy A., Balligand T., Vertenoeil G., Leroy E., Albu R.-I., Defour J.-P., Nivarthi H., Hug E., et al. Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood. 2019;133:2669–2681. doi: 10.1182/blood-2018-09-874578. PubMed DOI

Pecquet C., Balligand T., Chachoua I., Roy A., Vertenoeil G., Colau D., Fertig E., Marty C., Nivarthi H., Defour J.-P., et al. Secreted Mutant Calreticulins As Rogue Cytokines Trigger Thrombopoietin Receptor Activation Specifically in CALR Mutated Cells: Perspectives for MPN Therapy. Blood. 2018;132:4. doi: 10.1182/blood-2018-99-118348. PubMed DOI

Scott L., Tong W., Levine R., Scott M., Beer P., Stratton M., Andrew Futreal P., Erber W., McMullin M., Harrison C., et al. JAK2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis. N. Engl. J. Med. 2007;356:459–468. doi: 10.1056/NEJMoa065202. PubMed DOI PMC

Kralovics R., Guan Y., Prchal J. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp. Hematol. 2002;30:229–236. doi: 10.1016/S0301-472X(01)00789-5. PubMed DOI

Scott L., Scott M., Campbell P., Green A. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood. 2006;108:2435–2437. doi: 10.1182/blood-2006-04-018259. PubMed DOI

Tiedt R., Hao-Shen H., Sobas M., Looser R., Dirnhofer S., Schwaller J., Skoda R. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111:3931–3940. doi: 10.1182/blood-2007-08-107748. PubMed DOI

Vannucchi A., Antonioli E., Guglielmelli P., Rambaldi A., Barosi G., Marchioli R., Marfisi R., Finazzi G., Guerini V., Fabris F., et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110:840–846. doi: 10.1182/blood-2006-12-064287. PubMed DOI

Yao H., Ma Y., Hong Z., Zhao L., Monaghan A.S., Hu M., Huang L.-S. Activating JAK2 mutants reveal cytokine receptor coupling differences that impact outcomes in myeloproliferative neoplasm. Leukemia. 2017;31:2122–2131. doi: 10.1038/leu.2017.1. PubMed DOI PMC

Chen E., Beer P., Godfrey A., Ortmann C., Li J., Costa-Pereira A., Ingle C., Dermitzakis E., Campbell P., Green A. Distinct Clinical Phenotypes Associated with JAK2V617F Reflect Differential STAT1 Signaling. Cancer Cell. 2010;18:524–535. doi: 10.1016/j.ccr.2010.10.013. PubMed DOI PMC

Ortmann C., Kent D., Nangalia J., Silber Y., Wedge D., Grinfeld J., Baxter E., Massie C., Papaemmanuil E., Menon S., et al. Effect of Mutation Order on Myeloproliferative Neoplasms. N. Engl. J. Med. 2015;372:601–612. doi: 10.1056/NEJMoa1412098. PubMed DOI PMC

Lieschke G., Currie P. Animal models of human disease: Zebrafish swim into view. Nat. Rev. Genet. 2007;8:353–367. doi: 10.1038/nrg2091. PubMed DOI

Baeten J., de Jong J. Genetic Models of Leukemia in Zebrafish. Front. Cell Dev. Biol. 2017;6:115. doi: 10.3389/fcell.2018.00115. PubMed DOI PMC

Ma A., Fan A., Ward A., Liongue C., Lewis R., Cheng S., Chan P., Yip S.-F., Liang R., Leung A. A novel zebrafish jak2aV581F model shared features of human JAK2V617F polycythemia vera. Exp. Hematol. 2009;37:1379–1386. doi: 10.1016/j.exphem.2009.08.008. PubMed DOI

Lim K.-H., Chang Y.C., Chiang Y.H., Lin H.C., Chang C.-Y., Lin C.S., Huang L., Wang W.T., Chen G.-S., Chou W.C., et al. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish. Blood Cancer J. 2016;6:e481. doi: 10.1038/bcj.2016.83. PubMed DOI PMC

Gjini E., Jing C.-B., Nguyen A., Reyon D., Gans E., Kesarsing M., Peterson J., Pozdnyakova O., Rodig S., Mansour M., et al. Disruption of asxl1 results in myeloproliferative neoplasms in zebrafish. Dis. Models Mech. 2019;12:dmm035790. doi: 10.1242/dmm.035790. PubMed DOI PMC

Dunbar A., Nazir A., Levine R. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs) Curr. Protoc. Pharmacol. 2017;77:11–19. PubMed PMC

Bumm T., Elsea C., Corbin A., Loriaux M., Sherbenou D., Wood L., Deininger J., Silver R., Druker B., Deininger M. Characterization of Murine JAK2V617F-Positive Myeloproliferative Disease. Cancer Res. 2007;66:11156–11165. doi: 10.1158/0008-5472.CAN-06-2210. PubMed DOI

Lacout C., Pisani D., Tulliez M., Moreau-Gachelin F., Vainchenker W., Villeval J.-L., Lacout C., Pisani D.F., Tulliez M., Gachelin F.M., et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108:1652–1660. doi: 10.1182/blood-2006-02-002030. PubMed DOI

Wernig G., Mercher T., Okabe R., Levine R., Lee B., Gilliland G. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107:4274–4281. doi: 10.1182/blood-2005-12-4824. PubMed DOI PMC

Zaleskas V., Krause D., Lazarides K., Patel N., Hu Y., Li S., Van Etten R. Molecular Pathogenesis and Therapy of Polycythemia Induced in Mice by JAK2 V617F. PLoS ONE. 2006;1:e18. doi: 10.1371/journal.pone.0000018. PubMed DOI PMC

Shide K., Shimoda H., Kumano T., Karube K., Kameda T., Takenaka K., Oku S., Abe H., Katayose K., Kubuki Y., et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia. 2008;22:87–95. doi: 10.1038/sj.leu.2405043. PubMed DOI

Xing S., Wanting T., Zhao W., Ma J., Wang S., Xu X., Li Q., Fu X., Xu M., Zhao Z. Transgenic expression of JAK2(V617F) causes myeloproliferative disorders in mice. Blood. 2008;111:5109–5117. doi: 10.1182/blood-2007-05-091579. PubMed DOI PMC

Li J., Spensberger D., Sook Ahn J., Anand S., Beer P., Ghevaert C., Chen E., Forrai A., Scott L., Ferreira R., et al. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood. 2010;116:1528–1538. doi: 10.1182/blood-2009-12-259747. PubMed DOI PMC

Lu X., Levine R., Tong W., Wernig G., Pikman Y., Zarnegar S., Gilliland G., Lodish H. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc. Natl. Acad. Sci. USA. 2006;102:18962–18967. doi: 10.1073/pnas.0509714102. PubMed DOI PMC

Kota J., Caceres N., Constantinescu S. Aberrant signal transduction pathways in myeloproliferative neoplasms. Leukemia. 2008;22:1828–1840. doi: 10.1038/leu.2008.236. PubMed DOI

Ebie A., Fleming K. Dimerization of the Erythropoietin Receptor Transmembrane Domain in Micelles. J. Mol. Biol. 2007;366:517–524. doi: 10.1016/j.jmb.2006.11.035. PubMed DOI

Divoky V., Song J., Horvathova M., Kralova B., Bruchova Votavova H., Prchal J., Yoon D. Delayed Hemoglobin Switching and Perinatal Neocytolysis in Mice with Gain-of-Function Erythropoietin Receptor. J. Mol. Med. 2015;94:597–608. doi: 10.1007/s00109-015-1375-y. PubMed DOI PMC

Chen E., Schneider R., Breyfogle L., Rosen E., Poveromo L., Elf S., Ko A., Brumme K., Levine R., Ebert B., et al. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Blood. 2014;125:327–335. doi: 10.1182/blood-2014-04-567024. PubMed DOI PMC

Kameda T., Shide K., Yamaji T., Kamiunten A., Sekine M., Taniguchi Y., Hidaka T., Kubuki Y., Shimoda H., Marutsuka K., et al. Loss of TET2 has dual roles in murine myeloproliferative neoplasms: Disease sustainer and disease accelerator. Blood. 2014;125:304–315. doi: 10.1182/blood-2014-04-555508. PubMed DOI

Falanga A., Marchetti M. Thrombosis in Myeloproliferative Neoplasms. Semin. Thromb. Hemost. 2014;40:348–358. PubMed

Vannucchi A., Guglielmelli P. JAK2 Mutation-Related Disease and Thrombosis. Semin. Thromb. Hemost. 2013;39:496–506. PubMed

Wang W., Liu W., Fidler T., Wang Y., Tang Y., Woods B., Welch C., Cai B., Silvestre-Roig C., Ai D., et al. Macrophage Inflammation, Erythrophagocytosis, and Accelerated Atherosclerosis in Jak2V617F Mice. Circ. Res. 2018;123:e35–e47. doi: 10.1161/CIRCRESAHA.118.313283. PubMed DOI PMC

Zhao B., Keerthivasan G., Mei Y., Yang J., McElherne J., Wong P., Doench J., Feng G., Root D., Ji P. Targeted shRNA screening identified critical roles of pleckstrin-2 in erythropoiesis. Haematologica. 2014;99:1157–1167. doi: 10.3324/haematol.2014.105809. PubMed DOI PMC

Zhao B., Mei Y., Cao L., Zhang J., Sumagin R., Yang J., Gao J., Schipma M., Wang Y., Thorsheim C., et al. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J. Clin. Investig. 2017;128:125–140. doi: 10.1172/JCI94518. PubMed DOI PMC

Wolach O., Sellar R., Martinod K., Cherpokova D., McConkey M., Chappell R., Silver A., Adams D., Castellano C., Schneider R., et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med. 2018;10:eaan8292. doi: 10.1126/scitranslmed.aan8292. PubMed DOI PMC

Edelmann B., Gupta N., Schnoeder T., Oelschlegel A., Shahzad K., Goldschmidt J., Philipsen L., Weinert S., Ghosh A., Saalfeld F., et al. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J. Clin. Investig. 2018;128:4359–4371. doi: 10.1172/JCI90312. PubMed DOI PMC

Teofili L., Martini M., Iachininoto M., Capodimonti S., Nuzzolo E., Torti L., Cenci T., Larocca L., Leone G. Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms. Blood. 2011;117:2700–2707. doi: 10.1182/blood-2010-07-297598. PubMed DOI

Rosti V., Villani L., Riboni R., Poletto V., Bonetti E., Tozzi L., Bergamaschi G., Catarsi P., Dallera E., Novara F., et al. Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation. Blood. 2012;121:360–368. doi: 10.1182/blood-2012-01-404889. PubMed DOI

Guy A., Gourdou-Latyszenok V., Lay N., Peghaire C., Kilani B., Dias J., Duplaa C., Renault M.-A., Denis C., Villeval J., et al. Vascular endothelial cell expression of JAK2V617F is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica. 2018;104:70–81. doi: 10.3324/haematol.2018.195321. PubMed DOI PMC

Cocault L., Bouscary D., Le Bousse Kerdiles C., Clay D., Picard F., Gisselbrecht S., Souyri M. Ectopic expression of murine TPO receptor (c-Mpl) in mice is pathogenic and induces erythroblastic proliferation. Blood. 1996;88:1656–1665. doi: 10.1182/blood.V88.5.1656.1656. PubMed DOI

Villeval J.-L., Cohen-Solal K., Tulliez M., Giraudier S., Guichard J., Burstein S.A., Cramer E., Vainchenker W., Wendling F. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood. 1998;90:4369–4383. doi: 10.1182/blood.V90.11.4369. PubMed DOI

Bhagwat N., Koppikar P., Keller M., Marubayashi S., Shank K., Rampal R., Qi J., Kleppe M., Patel H., Shah S., et al. Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms. Blood. 2014;123:2075–2083. doi: 10.1182/blood-2014-01-547760. PubMed DOI PMC

Sangkhae V., Etheridge S., Kaushansky K., Hitchcock I. The thrombopoietin receptor, MPL, is critical for development of a JAK2V(617)F-induced myeloproliferative neoplasm. Blood. 2014;124:3956–3963. doi: 10.1182/blood-2014-07-587238. PubMed DOI PMC

Klampfl T., Gisslinger H., Harutyunyan A., Nivarthi H., Rumi E., Milosevic Feenstra J., Them N., Berg T., Gisslinger B., Pietra D., et al. Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. N. Engl. J. Med. 2013;369:2379–2390. doi: 10.1056/NEJMoa1311347. PubMed DOI

Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI

Ye Z., Zhan H., Mali P., Dowey S., Williams D., Jang Y., Dang C., Spivak J., Moliterno A., Cheng L. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood. 2009;114:5473–5480. doi: 10.1182/blood-2009-04-217406. PubMed DOI PMC

Papapetrou E. Modeling myeloid malignancies with patient-derived iPSCs. Exp. Hematol. 2018;71:77–84. doi: 10.1016/j.exphem.2018.11.006. PubMed DOI PMC

Smith C., Abalde-Atristain L., He C., Brodsky R., Braunstein E., Chaudhari P., Jang Y., Cheng L., Ye Z. Efficient and Allele-Specific Genome Editing of Disease Loci in Human iPSCs. Mol. Ther. 2014;23:570–577. doi: 10.1038/mt.2014.226. PubMed DOI PMC

Fu Y., Foden J., Khayter C., Maeder M., Reyon D., Joung J., Sander J. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013;31:822–826. doi: 10.1038/nbt.2623. PubMed DOI PMC

Smith C., Gore A., Yan W., Abalde-Atristain L., Li Z., He C., Wang Y., Brodsky R., Zhang K., Cheng L., et al. Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell. 2014;15:12–13. doi: 10.1016/j.stem.2014.06.011. PubMed DOI PMC

Tian L., Piterkova L., Wang L., Ye Z., Cheng L., Wheeler D.A., Hakonarson H., Prchal J. Whole Genome Sequencing of Four CD34+-Derived iPSC Polycythemia Vera Clones from a Single Female. Blood. 2012;120:1755. doi: 10.1182/blood.V120.21.1755.1755. DOI

Saliba J., Hamidi S., Lenglet G., Langlois T., Yin J., Cabagnols X., Secardin L., Legrand C., Galy A., Opolon P., et al. Heterozygous and Homozygous JAK2V617F States Modeled by Induced Pluripotent Stem Cells from Myeloproliferative Neoplasm Patients. PLoS ONE. 2013;8:e74257. doi: 10.1371/journal.pone.0074257. PubMed DOI PMC

Ye Z., Liu C., Lanikova L., Dowey S., He C., Huang X., Brodsky R., Spivak J., Prchal J., Cheng L. Differential Sensitivity to JAK Inhibitory Drugs by Isogenic Human Erythroblasts and Hematopoietic Progenitors Generated from Patient-Specific Induced Pluripotent Stem Cells. Stem Cells. 2014;32:269–278. doi: 10.1002/stem.1545. PubMed DOI PMC

Verstovsek S., Kantarjian H., Mesa R., Pardanani A., Cortes-Franco J., Thomas D.A., Estrov Z., Fridman J., Bradley E., Erickson-Viitanen S., et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N. Engl. J. Med. 2010;363:1117–1127. doi: 10.1056/NEJMoa1002028. PubMed DOI PMC

Verstovsek S., Kantarjian H., Estrov Z., Cortes J., Thomas D., Kadia T., Pierce S., Jabbour E., Borthakur G., Rumi E., et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: Survival advantage in comparison to matched historical controls. Blood. 2012;120:1202–1209. doi: 10.1182/blood-2012-02-414631. PubMed DOI PMC

Senquan L., Williams D., Moliterno A., Spivak J., Huang H., Gao Y., Ye Z., Cheng L. Generation, Characterization and Genetic Modification of Human iPSCs Containing Calr, MPL and JAK2 Mutations Found in MPN Patients. Blood. 2016;128:3139. doi: 10.1182/blood.V128.22.3139.3139. DOI

Liu S., Ye Z., Gao Y., He C., Rowley D., Moliterno A., Spivak J., Huang H., Cheng L. Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene. Stem Cell Res. 2017;18:57–59. doi: 10.1016/j.scr.2016.12.012. PubMed DOI

Wang W., Wang T., Kotini A., Iancu-Rubin C., Hoffman R., Papapetrou E. Modeling Calreticulin-Mutant Myeloproliferative Neoplasms with Isogenic Induced Pluripotent Stem Cells. Blood. 2018;132:4319. doi: 10.1182/blood-2018-99-111512. DOI

Štetka J., Vyhlidalova P., Lanikova L., Koralkova P., Gursky J., Hlusi A., Flodr P., Hubackova S., Bartek J., Hodny Z., et al. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene. 2019;38:1. doi: 10.1038/s41388-019-0813-7. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Special Issue: Animal Modeling in Cancer

. 2020 Aug 27 ; 11 (9) : . [epub] 20200827

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...