Antimicrobial peptide isolated from Bacillus amyloliquefaciens K14 revitalizes its use in combinatorial drug therapy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27787755
DOI
10.1007/s12223-016-0479-2
PII: 10.1007/s12223-016-0479-2
Knihovny.cz E-zdroje
- MeSH
- ampicilin farmakologie MeSH
- antibakteriální látky biosyntéza izolace a purifikace farmakologie MeSH
- Bacillus amyloliquefaciens klasifikace imunologie metabolismus MeSH
- biofilmy účinky léků růst a vývoj MeSH
- chromatografie iontoměničová MeSH
- enterokoky rezistentní vůči vankomycinu účinky léků růst a vývoj MeSH
- fylogeneze MeSH
- kationické antimikrobiální peptidy biosyntéza izolace a purifikace farmakologie MeSH
- kombinovaná farmakoterapie MeSH
- mikrobiální testy citlivosti MeSH
- oxacilin farmakologie MeSH
- rezistence na vankomycin účinky léků MeSH
- sekvence aminokyselin MeSH
- stabilita proteinů MeSH
- Staphylococcus aureus účinky léků růst a vývoj MeSH
- synergismus léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ampicilin MeSH
- antibakteriální látky MeSH
- kationické antimikrobiální peptidy MeSH
- oxacilin MeSH
The present study was performed to evaluate the antibacterial activities of an antimicrobial peptide (CSpK14) and the synergies thereof with β-lactams against vancomycin-resistant Staphylococcus aureus (VRSA) and Enterococci (VRE). Our strain was isolated from fermented food (kimchi), which is 99.79 % homologous with Bacillus amyloliquefaciens subsp. plantarum FZB42(T). CSpK14 was purified to homogeneity by diammonium sulfate precipitation, concentration, dialysis, and followed by two-stage chromatographic separation, i.e., Sepharose Cl-6B and Sephadex G-25 chromatography, and had a molar mass of ~4.6 kDa via Tricine SDS-PAGE and in situ examination. It was stable at pH 6.0-11.5 and temperature up to 80 °C. In addition, it was also stable with various metal ions, solvents, and proteases. The N-terminal amino acid sequence was H-Y-D-P-G-D-D-S-G-N-T-G and did not show any significant homology with reported peptides. However, it shows some degrees of identity with alpha-2-macroglobulin and ligand-gated channel protein from different microorganisms. CSpK14 significantly reduced the minimum inhibitory concentrations (MICs) of β-lactams and had no effect on non-β-lactams against VRSA and VRE. MICs of CSpK14/oxacillin and CSpK14/ampicillin were reduced by 8- to 64-fold and 2- to 16-fold, respectively. The time killing assay between CSpK14/oxacillin (2.29-2.37 Δlog10CFU/mL at 24 h) and CSpK14/ampicillin (2.30-2.38 Δlog10CFU/mL at 24 h) being >2-fold and fractional inhibitory concentration index ˂0.5 revealed synergy. Furthermore, the biofilms formed by VRSA and VRE were reduced completely. CSpK14 was simple to purify, had low molecular mass, was stable over a wide pH range or tested chemicals, had broad inhibitory spectrum, and possessed potent synergistic antimicrobial-antibiofilm properties. CSpK14 synergistically enhanced the efficacy of β-lactams and is therefore suitable for combination therapy.
Zobrazit více v PubMed
Diagn Microbiol Infect Dis. 1993 May-Jun;16(4):343-9 PubMed
J Biol Chem. 1987 Sep 15;262(26):12488-95 PubMed
Drugs. 2003;63(14):1511-24 PubMed
Curr Opin Microbiol. 2006 Oct;9(5):445-53 PubMed
PLoS One. 2013 Jun 18;8(6):e66557 PubMed
PLoS One. 2009 Aug 26;4(8):e6788 PubMed
J Biol Chem. 2008 Jul 4;283(27):18636-45 PubMed
J Antimicrob Chemother. 2008 Feb;61(2):365-70 PubMed
J Appl Microbiol. 2002;93(4):714-24 PubMed
Nat Prod Rep. 2004 Apr;21(2):263-77 PubMed
Nat Protoc. 2008;3(2):163-75 PubMed
Cell Mol Life Sci. 2007 Apr;64(7-8):922-33 PubMed
Antimicrob Agents Chemother. 2001 Nov;45(11):3198-201 PubMed
Arch Pharm Res. 2004 Feb;27(2):246-53 PubMed
J Clin Invest. 2014 Jul;124(7):2836-40 PubMed
Antimicrob Agents Chemother. 2004 Dec;48(12):4673-9 PubMed
J Appl Microbiol. 2002;93(3):512-9 PubMed
Microb Cell Fact. 2002 Apr 18;1(1):1 PubMed
Org Biomol Chem. 2010 Apr 7;8(7):1679-87 PubMed
Nature. 1979 Jul 12;280(5718):165-6 PubMed
Int J Antimicrob Agents. 2010 Apr;35(4):322-32 PubMed
Annu Rev Phytopathol. 2008;46:273-301 PubMed
Am J Clin Nutr. 2001 Feb;73(2 Suppl):476S-483S PubMed
Clin Microbiol Infect. 2000 Sep;6(9):503-8 PubMed
Enzyme Microb Technol. 2016 Oct;92 :76-85 PubMed
Cell Mol Life Sci. 2011 Jul;68(13):2243-54 PubMed
Int J Antimicrob Agents. 2012 Jul;40(1):80-3 PubMed
Bacteriol Rev. 1976 Sep;40(3):722-56 PubMed
Int J Antimicrob Agents. 2004 Dec;24(6):536-47 PubMed
Nat Biotechnol. 2006 Dec;24(12):1551-7 PubMed
Clin Lab Sci. 2005 Summer;18(3):170-80 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Nat Protoc. 2006;1(1):16-22 PubMed
Curr Microbiol. 2013 Jan;66(1):56-60 PubMed
Antimicrob Agents Chemother. 2005 Jul;49(7):2845-50 PubMed
Nat Rev Microbiol. 2005 Mar;3(3):238-50 PubMed