Thermus and the Pink Discoloration Defect in Cheese

. 2016 May-Jun ; 1 (3) : . [epub] 20160614

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27822529

A DNA sequencing-based strategy was applied to study the microbiology of Continental-type cheeses with a pink discoloration defect. The basis for this phenomenon has remained elusive, despite decades of research. The bacterial composition of cheese containing the defect was compared to that of control cheese using 16S rRNA gene and shotgun metagenomic sequencing as well as quantitative PCR (qPCR). Throughout, it was apparent that Thermus, a carotenoid-producing genus, was present at higher levels in defect-associated cheeses than in control cheeses. Prompted by this finding and data confirming the pink discoloration to be associated with the presence of a carotenoid, a culture-based approach was employed, and Thermus thermophilus was successfully cultured from defect-containing cheeses. The link between Thermus and the pinking phenomenon was then established through the cheese defect equivalent of Koch's postulates when the defect was recreated by the reintroduction of a T. thermophilus isolate to a test cheese during the manufacturing process. IMPORTANCE Pink discoloration in cheese is a defect affecting many cheeses throughout the world, leading to significant financial loss for the dairy industry. Despite decades of research, the cause of this defect has remained elusive. The advent of high-throughput, next-generation sequencing has revolutionized the field of food microbiology and, with respect to this study, provided a means of testing a possible microbial basis for this defect. In this study, a combined 16S rRNA, whole-genome sequencing, and quantitative PCR approach was taken. This resulted in the identification of Thermus, a carotenoid-producing thermophile, in defect-associated cheeses and the recreation of the problem in cheeses to which Thermus was added. This finding has the potential to lead to new strategies to eliminate this defect, and our method represents an approach that can be employed to investigate the role of microbes in other food defects of unknown origin.

Zobrazit více v PubMed

Daly DFM, McSweeney PLH, Sheehan JJ. 2012. Pink discolouration defect in commercial cheese: a review. Dairy Sci Technol 92:439–453. doi: 10.1007/s13594-012-0079-0. DOI

Morgan GFV. 1933. 60. Discoloration in New Zealand Cheddar cheese. Muddy, pink and bleached defects. I. Bacteriological investigations. J Dairy Res 4:226–237. doi: 10.1017/S0022029900000777. DOI

Carini S, Lodi R, Giussani G. 1979. Pink discoloration in fontina cheese. Latte 4:914–920.

Giuliano G, Rosati C, Bramley PM. 2003. To dye or not to dye: biochemistry of annatto unveiled. Trends Biotechnol 21:513–516. doi: 10.1016/j.tibtech.2003.10.001. PubMed DOI

Martley FG, Michel V. 2001. Pinkish colouration in Cheddar cheese—description and factors contributing to its formation. J Dairy Res 68:327–332. doi: 10.1017/S0022029901004836. PubMed DOI

Park HS, Reinbold GW, Hammond EG. 1967. Role of propionibacteria in split defect of Swiss cheese. J Dairy Sci 50:820–823. doi: 10.3168/jds.S0022-0302(67)87528-3. PubMed DOI

Pelaez C, Northolt MD. 1988. Factors leading to pink discolouration of the surface of Gouda cheese. Neth Milk Dairy J 42:323–336.

Shannon EL, Olson NF. 1969. Rapid screening test to predict the tendency of lactic starter cultures to produce pink discoloration in Italian cheese. J Dairy Sci 52:1678–1680. doi: 10.3168/jds.S0022-0302(69)86814-1. DOI

Govindarajan S, Morris HA. 1973. Pink discoloration in Cheddar cheese. J Food Sci 38:675–678. doi: 10.1111/j.1365-2621.1973.tb02843.x. DOI

Paramita A, Broome M. 2008. Pink discolouration in Romano style cheese—role of α-dicarbonyls and ammonia, p 130 Proceedings of the 5th IDF Symposium on Cheese Ripening, Bern, Switzerland.

Shumaker E, Wendorff W. 2007. Factors affecting pink discoloration in annatto-colored pasteurized process cheese. J Food Sci 63:828–831.

Betzold N. 2004. Pink discoloration of mozzarella cheese. MSc thesis. University of Wisconsin, Stout, WI.

Bottazzi V, Cappa F, Scolari G, Parisi M. 2000. Comparsa di colorazione rossa in formaggio Grana prodotto con starter monocoltura. Sci Tecnica Lattiero Casearia 51:67–74.

Shokralla S, Spall JL, Gibson JF, Hajibabaei M. 2012. Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805. doi: 10.1111/j.1365-294X.2012.05538.x. PubMed DOI

Ercolini D. 2013. High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl Environ Microbiol 79:3148–3155. doi: 10.1128/AEM.00256-13. PubMed DOI PMC

Quigley L, O’Sullivan O, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD. 2012. High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Appl Environ Microbiol 78:5717–5723. doi: 10.1128/AEM.00918-12. PubMed DOI PMC

Wolfe BE, Button JE, Santarelli M, Dutton RJ. 2014. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158:422–433. doi: 10.1016/j.cell.2014.05.041. PubMed DOI PMC

Bokulich NA, Mills DA. 2013. Facility-specific “house” microbiome drives microbial landscapes of artisan cheesemaking plants. Appl Environ Microbiol 79:5214–5223. doi: 10.1128/AEM.00934-13. PubMed DOI PMC

O’Sullivan DJ, Cotter PD, O’Sullivan O, Giblin L, McSweeney PL, Sheehan JJ. 2015. Temporal and spatial differences in microbial composition during the manufacture of a Continental-type cheese. Appl Environ Microbiol 81:2525–2533 doi: 10.1128/aem.04054-14. PubMed DOI PMC

Marshall CP, Olcott MA. 2010. The potential of Raman spectroscopy for the analysis of diagenetically transformed carotenoids. Philos Trans A Math Phys Eng Sci 368:3137–3144. doi: 10.1098/rsta.2010.0016. PubMed DOI

Brock TD, Freeze H. 1969. PubMed PMC

Wadhwani R, McMahon DJ. 2012. Color of low-fat cheese influences flavor perception and consumer liking. J Dairy Sci 95:2336–2346. doi: 10.3168/jds.2011-5142. PubMed DOI

Tian B, Hua Y. 2010. Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends Microbiol 18:512–520. doi: 10.1016/j.tim.2010.07.007. PubMed DOI

Pěčková M. 1991. Properties of a hyperthermophilic bacterium ( DOI

Pask-Hughes R, Williams RA. 1975. Extremely thermophilic gram-negative bacteria from hot tap water. J Gen Microbiol 88:321–328. doi: 10.1099/00221287-88-2-321. PubMed DOI

Brock TD, Boylen KL. 1973. Presence of thermophilic bacteria in laundry and domestic hot-water heaters. Appl Microbiol 25:72–76. PubMed PMC

Ekman J, Kosonen M, Jokela S, Kolari M, Korhonen P, Salkinoja-Salonen M. 2007. Detection and quantitation of colored deposit-forming Meiothermus spp. in paper industry processes and end products. J Ind Microbiol Biotechnol 34:203–211. doi: 10.1007/s10295-006-0187-z. PubMed DOI

Kolari M, Nuutinen J, Rainey FA, Salkinoja-Salonen MS. 2003. Colored moderately thermophilic bacteria in paper-machine biofilms. J Ind Microbiol Biotechnol 30:225–238. doi: 10.1007/s10295-003-0047-z. PubMed DOI

Mountain B. 2012. Life in hotsprings. In Te Ara—the encyclopedia of New Zealand. Manatū Taonga Ministry for Culture and Heritage, Wellington, New Zealand: http://www.teara.govt.nz/en/life-in-hot-springs.

Tabata K, Ishida S, Nakahara T, Hoshino T. 1994. A carotenogenic gene cluster exists on a large plasmid in Thermus thermophilus. FEBS Lett 341:251–255. doi: 10.1016/0014-5793(94)80466-4. PubMed DOI

Fujita A, Misumi Y, Honda S, Sato T, Koyama Y. 2013. Construction of new cloning vectors that employ the phytoene synthase encoding gene for color screening of cloned DNA inserts in Thermus thermophilus. Gene 527:655–662. doi: 10.1016/j.gene.2013.06.069. PubMed DOI

Langeveld LPM, Van Montfort-Wuasig RM, Weerkamp AH, Waalewijn R, Wever JS.. 1994. Adherence, growth and release of bacteria in a tube heat exchanger for milk. Neth Milk Dairy J 49:201– 220.

Chang S-F, Ayres JW, Sandine WE. 1985. Analysis of cheese for histamine, tyramine, tryptamine, histidine, tyrosine, and tryptophane. J Dairy Sci 68:2840–2846. doi: 10.3168/jds.S0022-0302(85)81176-0. PubMed DOI

Quigley L, O’Sullivan O, Beresford TP, Paul Ross R, Fitzgerald GF, Cotter PD. 2012. A comparison of methods used to extract bacterial DNA from raw milk and raw milk cheese. J Appl Microbiol 113:96–105. doi: 10.1111/j.1365-2672.2012.05294.x. PubMed DOI

Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O’Toole PW. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38:e200. doi: 10.1093/nar/gkq873. PubMed DOI PMC

Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. doi: 10.1093/nar/gkn879. PubMed DOI PMC

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. 2007. Silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. doi: 10.1093/nar/gkm864. PubMed DOI PMC

Huson DH, Auch AF, Qi J, Schuster SC. 2007. MEGAN analysis of metagenomic data. Genome Res 17:377–386. doi: 10.1101/gr.5969107. PubMed DOI PMC

Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. 2008. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3:e2527. doi: 10.1371/journal.pone.0002527. PubMed DOI PMC

Kruskal WH, Wallis WA. 1952. Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. doi: 10.1080/01621459.1952.10483441. DOI

Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205. doi: 10.1093/nar/gkt1076. PubMed DOI PMC

Quigley L, McCarthy R, O’Sullivan O, Beresford TP, Fitzgerald GF, Ross RP, Stanton C, Cotter PD. 2013. The microbial content of raw and pasteurized cow milk as determined by molecular approaches. J Dairy Sci 96:4928–4937. doi: 10.3168/jds.2013-6688. PubMed DOI

IDF 1988. Cheese and processed cheese: determination of chloride content (potentiometric titration method). International standard 4a. International Dairy Federation, Brussels, Belgium.

IDF 1982. Determination of total solids content (cheese and processed cheese), International standard 4a. International Dairy Federation, Brussels, Belgium.

IDF 1993. Milk: determination of the nitrogen content (Kjeldahl method) and calculation of crude protein content. International standard 20b. International Dairy Federation, Brussels, Belgium.

British Standards Institute 1976. British standard methods for chemical analysis of cheese: determination of pH value. British Standards Institute, London, United Kingdom.

Sheehan JJ, Fenelon MA, Wilkinson MG, McSweeney PLH. 2007. Effect of cook temperature on starter and non-starter lactic acid bacteria viability, cheese composition and ripening indices of a semi-hard cheese manufactured using thermophilic cultures. Int Dairy J 17:704–716. doi: 10.1016/j.idairyj.2006.08.011. DOI

Fenelon MA, O’Connor P, Guinee TP. 2000. The effect of fat content on the microbiology and proteolysis in Cheddar cheese during ripening dairy foods. J Dairy Sci 83:2173–2183. doi: 10.3168/jds.S0022-0302(00)75100-9. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...