Auxin flow-mediated competition between axillary buds to restore apical dominance

. 2016 Nov 08 ; 6 () : 35955. [epub] 20161108

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27824063

Apical dominance is one of the fundamental developmental phenomena in plant biology, which determines the overall architecture of aerial plant parts. Here we show apex decapitation activated competition for dominance in adjacent upper and lower axillary buds. A two-nodal-bud pea (Pisum sativum L.) was used as a model system to monitor and assess auxin flow, auxin transport channels, and dormancy and initiation status of axillary buds. Auxin flow was manipulated by lateral stem wounds or chemically by auxin efflux inhibitors 2,3,5-triiodobenzoic acid (TIBA), 1-N-naphtylphtalamic acid (NPA), or protein synthesis inhibitor cycloheximide (CHX) treatments, which served to interfere with axillary bud competition. Redirecting auxin flow to different points influenced which bud formed the outgrowing and dominant shoot. The obtained results proved that competition between upper and lower axillary buds as secondary auxin sources is based on the same auxin canalization principle that operates between the shoot apex and axillary bud.

Zobrazit více v PubMed

Rameau C. et al.. Multiple pathways regulate shoot branching. Front. Plant Sci. 5, 741 (2015). PubMed PMC

Petrášek J. et al.. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914–918 (2006). PubMed

Wiśniewska J. et al.. Polar PIN localization directs auxin flow in plants. Science 312, 883 (2006). PubMed

Swarup R. et al.. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Gene Dev. 15, 2648–2653 (2001). PubMed PMC

Thimann K. V. & Skoog F. On the inhibition of bud development and other functions of growth substance in Vicia faba. Proc. R. Soc. Lond. Biol. Sci. 114, 317–339 (1934).

Hall S. M. & Hillman J. R. Correlative inhibition of lateral bud growth in Phaseolus vulgaris L. timing of bud growth following decapitation. Planta 123, 137–143 (1975). PubMed

Balla J., Blažková J., Reinöhl V. & Procházka S. Involvement of auxin and cytokinins in initiation of growth of isolated pea buds. Plant Growth Regul. 38, 149–156 (2002).

Prusinkiewicz P. et al.. Control of bud activation by an auxin transport switch. Proc. Natl. Acad. Sci. USA 106, 17431–17436 (2009). PubMed PMC

Crawford S. et al.. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137, 2905–2913 (2010). PubMed

Balla J., Kalousek P., Reinöhl V., Friml J. & Procházka S. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J. 65, 571–577 (2011). PubMed

Shinohara N., Taylor C. & Leyser O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol. 11, e1001474 (2013). PubMed PMC

Sachs T. The control of patterned differentiation of vascular tissues. Adv. Bot. Res. 9, 151–262 (1981).

Stafstrom J. S., Ripley B. D., Devitt M. L. & Drake B. Dormancy-associated gene expression in pea axillary buds. Planta 205, 547–552 (1998). PubMed

Aquilar-Martinez J. A., Poza-Carrion C. & Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19, 458–472 (2007). PubMed PMC

Goldsmith M. H. M. The polar transport of auxin. Annu. Rev. Plant Physiol. 28, 439–478 (1977).

Peterson C. A. & Fletcher R. A. Lateral bud growth on excised stem segments: effect of the stem. Can. J. Bot. 53, 243–248 (1975).

Morris S. E., Cox M. C. H., Ross J. J., Krisantini S. & Beveridge C. A. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant. Physiol. 138, 1665–1672 (2005). PubMed PMC

Ferguson B. J. & Beveridge C. A. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol. 149, 1929–1944 (2009). PubMed PMC

Renton M., Hanan J., Ferguson B. J. & Beveridge C. A. Models of long-distance transport: how is carrier-dependent auxin transport regulated in the stem? New Phytol. 194, 704–715 (2012). PubMed

Mason M. G., Ross J. J., Babst B. A., Wienclaw B. N. & Beveridge C. A. Sugar demand, not auxin, is the initial regulator of apical dominance. Proc. Natl. Acad. Sci. USA 111, 6092–6097 (2014). PubMed PMC

Brewer P. B., Dun E. A., Renyi G., Mason M. & Beveridge C. A. Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiol. 168, 1820–1829 (2015). PubMed PMC

Rayle D. L. & Cleland R. E. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99, 1271–1274 (1992). PubMed PMC

Yamagami M., Haga K., Napier R. M. & Iino M. Two distinct signaling pathways participate in auxin-induced swelling of pea epidermal protoplasts. Plant Physiol. 134, 735–747 (2004). PubMed PMC

Dhonukshe P. et al.. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc. Natl. Acad. Sci. USA 105, 4489–4494 (2008). PubMed PMC

Morgan D. G. Influence of α-naphtylphtalamic acid on the movement of indolyl-3-acetic acid in plants. Nature, 201, 476–477 (1964). PubMed

Petrášek J., Elčkner M., Morris D. A. & Zažímalová E. Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells. Planta, 216, 302–308 (2002). PubMed

Yoneyama K. et al.. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227, 125–132 (2007). PubMed

Sorefan K. et al.. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17, 1469–1474 (2003). PubMed PMC

Bainbridge K., Sorefan K., Ward S. & Leyser O. Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J. 44, 569–580 (2005). PubMed

Bangerth F. Response of cytokinin concentration in the xylem exudate of bean (Phaseolus vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance. Planta 194, 439–442 (1994).

Kim J. Y. et al.. Identification of an ABCB/P-glycoprotein-specific Inhibitor of Auxin Transport by Chemical Genomics. J. Biol. Chem. 285, 23307–23315 (2010). PubMed PMC

Petrášek J. et al.. Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol. 131, 254–263 (2003). PubMed PMC

Borkovec V. & Procházka S. The effect of cycloheximide on IAA-stimulated transport of 14C-ABA and 14C-sucrose in long pea epicotyl segments. Plant Growth Reg. 8, 1–9 (1989).

Robinson J. S., Albert A. C. & Morris D. A. Differential effects of brefeldin A and cycloheximide on the activity of auxin efflux carriers in Cucurbita pepo L. J. Plant Physiol. 155, 678–684 (1999).

Geldner N., Friml J., Stierhof Y. D., Jurgens G. & Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001). PubMed

Die J. V., Roman B., Nadal S. & Gonzalez-Verdejo C. I. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232, 145–153 (2010). PubMed

Paciorek T., Sauer M., Balla J., Wiśniewska J. & Friml J. Immunocytochemical technique for protein localization in sections of plant tissues. Nat. Protoc. 1, 104–107 (2006). PubMed

Sauer M. et al.. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Gene Dev. 20, 2902–2911 (2006). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization

. 2020 Jul 14 ; 11 (1) : 3508. [epub] 20200714

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...