• This record comes from PubMed

Ambience-sensitive optical refraction in ferroelectric nanofilms of NaNbO3

. 2014 Aug ; 15 (4) : 045001. [epub] 20140702

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Optical index of refraction n is studied by spectroscopic ellipsometry in epitaxial nanofilms of NaNbO3 with thickness ∼10 nm grown on different single-crystal substrates. The index n in the transparency spectral range (n ≈ 2.1 - 2.2) exhibits a strong sensitivity to atmospheric-pressure gas ambience. The index n in air exceeds that in an oxygen ambience by δn ≈ 0.05 - 0.2. The thermo-optical behaviour n(T) indicates ferroelectric state in the nanofilms. The ambience-sensitive optical refraction is discussed in terms of fundamental connection between refraction and ferroelectric polarization in perovskites, screening of depolarizing field on surfaces of the nanofilms, and thermodynamically stable surface reconstructions of NaNbO3.

See more in PubMed

Lines M E. and Glass A M. Principles and Applications of Ferroelectrics and Related Materials. Oxford Clarendon; 2004.

Uchino K. Ferroelectric Devices. New York Dekker; 2000.

Ferraro P, , Grilli S, De Natale P, , editors. Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques. Berlin Springer; 2009.

Wessels B W. Annu. Rev. Mater. Res. 2007;37:659. doi: 10.1146/annurev.matsci.37.052506.084226. DOI

DiDomenico M., Jr and Wemple S H. J. Appl. Phys. 1969;40:720. doi: 10.1063/1.1657458. DOI

Veithen M. and Ghosez P. Phys. Rev. B. 2005;71(132101) doi: 10.1103/PhysRevB.71.132101. DOI

Pertsev N A, Zembilgotov A G. and Tagantsev A K. Phys. Rev. Lett. 1998;80:1988. doi: 10.1103/PhysRevLett.80.1988. DOI

Ederer C. and Spaldin N A. Phys. Rev. Lett. 2005;95(257601) doi: 10.1103/PhysRevLett.95.257601. PubMed DOI

Diéguez O, Rabe K M. and Vanderbilt D. Phys. Rev. B. 2005;72(144101) doi: 10.1103/PhysRevB.72.144101. DOI

Pertsev N A. and Dkhil B. Appl. Phys. Lett. 2008;93(122903) doi: 10.1063/1.2988263. DOI

Mishra S K, Choudhury N, Chaplot S L, Krishna P S R. and Mittal R. Phys. Rev. B. 2007;76(024110) doi: 10.1103/PhysRevB.76.024110. DOI

Tyunina M, Dejneka A, Rytz D, Gregora I, Borodavka F, Vondracek M. and Honolka J. J. Phys.: Condens. Matter. 2014;26(125901) doi: 10.1088/0953-8984/26/12/125901. and references therein. PubMed DOI

Oja R. Phys. Rev. Lett. 2012;109(127207) doi: 10.1103/PhysRevLett.109.127207. PubMed DOI

Tyunina M, Dejneka A, Chvostova D, Levoska J, Plekh M. and Jastrabik L. Phys. Rev. B. 2012;86(224105) doi: 10.1103/PhysRevB.86.224105. DOI

Lynnyk A, Chvostova D, Pacherova O, Kocourek T, Jelinek M, Dejneka A. and Tyunina M. Appl. Phys. Lett. 2013;103(132901) doi: 10.1063/1.4822108. DOI

Yamazoe S, Sakurai H, Fukada M, Adachi H. and Wada T. Appl. Phys. Lett. 2009;95(062906) doi: 10.1063/1.3205103. DOI

Tyunina M. and Levoska J. Appl. Phys. Lett. 2009;95(102903) doi: 10.1063/1.3222900. DOI

Yuzyuk Y I, Shakhovoy R A, Raevskaya S I, Raevski I P, ElMarssi M, Karkut M G. and Simon P. Appl. Phys. Lett. 2010;96(222904) doi: 10.1063/1.3437090. DOI

Garrity K, Kakekhani A, Kolpak A, Ismail-Beigi S. Phys. Rev. B. 2013;88(045401) doi: 10.1103/PhysRevB.88.045401. DOI

Kolpak A M, Li D, Shao R, Rappe A M. and Bonnell D A. Phys. Rev. Lett. 2008;101(036102) doi: 10.1103/PhysRevLett.101.036102. PubMed DOI

King P D C. Phys. Rev. Lett. 2012;108(117602) doi: 10.1103/PhysRevLett.108.117602. PubMed DOI

Fong D D. Phys. Rev. Lett. 2006;96(127601) doi: 10.1103/PhysRevLett.96.127601. PubMed DOI

Wang R V. Phys. Rev. Lett. 2009;102(047601) doi: 10.1103/PhysRevLett.102.247003. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...