Ambience-sensitive optical refraction in ferroelectric nanofilms of NaNbO3
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
27877702
PubMed Central
PMC5090690
DOI
10.1088/1468-6996/15/4/045001
PII: TSTA11661197
Knihovny.cz E-resources
- Keywords
- NaNbO3, epitaxial, nanofilm, refraction,
- Publication type
- Journal Article MeSH
Optical index of refraction n is studied by spectroscopic ellipsometry in epitaxial nanofilms of NaNbO3 with thickness ∼10 nm grown on different single-crystal substrates. The index n in the transparency spectral range (n ≈ 2.1 - 2.2) exhibits a strong sensitivity to atmospheric-pressure gas ambience. The index n in air exceeds that in an oxygen ambience by δn ≈ 0.05 - 0.2. The thermo-optical behaviour n(T) indicates ferroelectric state in the nanofilms. The ambience-sensitive optical refraction is discussed in terms of fundamental connection between refraction and ferroelectric polarization in perovskites, screening of depolarizing field on surfaces of the nanofilms, and thermodynamically stable surface reconstructions of NaNbO3.
See more in PubMed
Lines M E. and Glass A M. Principles and Applications of Ferroelectrics and Related Materials. Oxford Clarendon; 2004.
Uchino K. Ferroelectric Devices. New York Dekker; 2000.
Ferraro P, , Grilli S, De Natale P, , editors. Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques. Berlin Springer; 2009.
Wessels B W. Annu. Rev. Mater. Res. 2007;37:659. doi: 10.1146/annurev.matsci.37.052506.084226. DOI
DiDomenico M., Jr and Wemple S H. J. Appl. Phys. 1969;40:720. doi: 10.1063/1.1657458. DOI
Veithen M. and Ghosez P. Phys. Rev. B. 2005;71(132101) doi: 10.1103/PhysRevB.71.132101. DOI
Pertsev N A, Zembilgotov A G. and Tagantsev A K. Phys. Rev. Lett. 1998;80:1988. doi: 10.1103/PhysRevLett.80.1988. DOI
Ederer C. and Spaldin N A. Phys. Rev. Lett. 2005;95(257601) doi: 10.1103/PhysRevLett.95.257601. PubMed DOI
Diéguez O, Rabe K M. and Vanderbilt D. Phys. Rev. B. 2005;72(144101) doi: 10.1103/PhysRevB.72.144101. DOI
Pertsev N A. and Dkhil B. Appl. Phys. Lett. 2008;93(122903) doi: 10.1063/1.2988263. DOI
Mishra S K, Choudhury N, Chaplot S L, Krishna P S R. and Mittal R. Phys. Rev. B. 2007;76(024110) doi: 10.1103/PhysRevB.76.024110. DOI
Tyunina M, Dejneka A, Rytz D, Gregora I, Borodavka F, Vondracek M. and Honolka J. J. Phys.: Condens. Matter. 2014;26(125901) doi: 10.1088/0953-8984/26/12/125901. and references therein. PubMed DOI
Oja R. Phys. Rev. Lett. 2012;109(127207) doi: 10.1103/PhysRevLett.109.127207. PubMed DOI
Tyunina M, Dejneka A, Chvostova D, Levoska J, Plekh M. and Jastrabik L. Phys. Rev. B. 2012;86(224105) doi: 10.1103/PhysRevB.86.224105. DOI
Lynnyk A, Chvostova D, Pacherova O, Kocourek T, Jelinek M, Dejneka A. and Tyunina M. Appl. Phys. Lett. 2013;103(132901) doi: 10.1063/1.4822108. DOI
Yamazoe S, Sakurai H, Fukada M, Adachi H. and Wada T. Appl. Phys. Lett. 2009;95(062906) doi: 10.1063/1.3205103. DOI
Tyunina M. and Levoska J. Appl. Phys. Lett. 2009;95(102903) doi: 10.1063/1.3222900. DOI
Yuzyuk Y I, Shakhovoy R A, Raevskaya S I, Raevski I P, ElMarssi M, Karkut M G. and Simon P. Appl. Phys. Lett. 2010;96(222904) doi: 10.1063/1.3437090. DOI
Garrity K, Kakekhani A, Kolpak A, Ismail-Beigi S. Phys. Rev. B. 2013;88(045401) doi: 10.1103/PhysRevB.88.045401. DOI
Kolpak A M, Li D, Shao R, Rappe A M. and Bonnell D A. Phys. Rev. Lett. 2008;101(036102) doi: 10.1103/PhysRevLett.101.036102. PubMed DOI
King P D C. Phys. Rev. Lett. 2012;108(117602) doi: 10.1103/PhysRevLett.108.117602. PubMed DOI
Fong D D. Phys. Rev. Lett. 2006;96(127601) doi: 10.1103/PhysRevLett.96.127601. PubMed DOI
Wang R V. Phys. Rev. Lett. 2009;102(047601) doi: 10.1103/PhysRevLett.102.247003. PubMed DOI