Subwavelength InSb-based Slot wavguides for THz transport: concept and practical implementations
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27924939
PubMed Central
PMC5141467
DOI
10.1038/srep38784
PII: srep38784
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Seeking better surface plasmon polariton (SPP) waveguides is of critical importance to construct the frequency-agile terahertz (THz) front-end circuits. We propose and investigate here a new class of semiconductor-based slot plasmonic waveguides for subwavelength THz transport. Optimizations of the key geometrical parameters demonstrate its better guiding properties for simultaneous realization of long propagation lengths (up to several millimeters) and ultra-tight mode confinement (~λ2/530) in the THz spectral range. The feasibility of the waveguide for compact THz components is also studied to lay the foundations for its practical implementations. Importantly, the waveguide is compatible with the current complementary metal-oxide-semiconductor (CMOS) fabrication technique. We believe the proposed waveguide configuration could offer a potential for developing a CMOS plasmonic platform and can be designed into various components for future integrated THz circuits (ITCs).
Department of Electrical and Computer Engineering Dalhousie University Halifax NS B3J 2X4 Canada
Institute of Photonics Faculty of Science Ningbo University Ningbo 315211 China
Nanotechnology Centre VSB Technical University of Ostrava Ostrava Poruba 708 33 Czech Republic
See more in PubMed
Ebbesen T. W., Genet C. & Bozhevolnyi S. I. Surface-plasmon circuitry. Phys. Today. 61, 44–50 (2008).
Oulton R. F., Sorger V. J., Genov D. A., Pile D. F. P. & Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photon. 2, 496–500 (2008).
Sorger V. J., Oulton R. F., Ma R. M. & Zhang X. Towards integrated plasmonic circuits. MRS Bull. 37, 728–738 (2012).
Barik A. et al.. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano. Lett. 14, 2006–2012, (2014). PubMed PMC
Li N. et al.. DNA-assembled bimetallic plasmonic nanosensors. Light Sci. Appl. 3, e226 (2014).
Neuman T. et al.. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photon. Rev. 9, 637–649 (2015).
Gu M., Li X. P. & Gao Y. Y. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl. 3, e177 (2014).
Maier S. A. Plamonics: Fundamental and applications (Springer, 2007).
Krasavin A. V. & Zayats A. V. Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. Phys. Rev. Lett. 109, 053901 (2012). PubMed
Tonouchi M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).
Li S. S., Jadidi M. M., Murphy T. E. & Kumar G. Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves. Opt. Express 21, 7041–7049 (2013). PubMed
Cada M. & Pistora J. Plasmon dispersion at an interface between a dielectric and a conducting medium with moving electrons. IEEE J. Quant. Electron. 52, 7200107 (2016).
Rivas J. G., Janke C., Bolivar P. H. & Kurz H. Transmission of THz radiation through InSb gratings of subwavelength apertures. Opt. Express 13, 847–859 (2005). PubMed
Rahm M., Nahata A., Akalin T., Beruete M. & Sorolla M. Focus on terahertz plasmonics. New J. Phys. 17, 100201 (2015).
Choi J., Kwon W. S., Kim K. S. & Kim S. Nondestructive material characterization in the terahertz band by selective extraction of sample-induced echo signals, J. Nondestruct. Eval. 34, 269 (2015).
Shah J. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures (Springer, New York, 1996).
Hasebe T., Kawabe S., Matsui H. & Tabata H. Metallic mesh-based terahertz biosensing of single- and double-stranded DNA. J. Appl. Phys. 112, 094702 (2012).
Seok E. et al.. Progress and challenges towards terahertz CMOS integrated circuits, IEEE J. Solid-State Circuits. 45, 1554–1564 (2010).
Li S. S., Jadidi M. M., Murphy T. E. & Kumar G. Plasmonic terahertz waveguide based on anisotropically etched silicon substrate. IEEE Trans. Terahertz Sci. Technol. 4, 454–458 (2014).
Vitiello M. S. et al.. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. Nano Lett. 12, 96–101 (2012). PubMed
Ramanandan G. K. P., Adam A. J. L. & Planken P. C. M. Enhanced terahertz emission from schottky junctions using plasmonic nanostructures. ACS Photon. 1, 1165–1172 (2014).
Berrier A. et al.. Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators. Opt. Express 20, 5052–5060 (2012). PubMed
Shourie R. J. et al.. Bio-interfacing of resonant transmission characteristics of InSb-based terahertz plasmonic waveguide. Biomed. Phys. Eng. Express 1, 025003 (2015).
Liu H. Q. et al.. Tunable subwavelength terahertz plasmon-induced transparency in the InSb slot waveguide side-coupled with two stub resonators. Appl. Opt. 54, 3918–3924 (2015).
Tao J., Hu B., He X. Y. & Wang Q. J. Tunable subwavelength terahertz plasmonic stub waveguide filters. IEEE T. Nanotechnol. 12, 1191–1197 (2013).
Amarloo H. & Naeini S. S. Slot plasmonic waveguide based on doped-GaAs for terahertz deep-subwavelength applications. J. Opt. Soc. Am. A 32, 2189–2194 (2015). PubMed
Ren Y. et al.. Single mode terahertz quantum cascade amplifer. Appl. Phys. Lett. 105, 141102 (2014).
He X. Y. Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra. J. Opt. A: Pure Appl. Opt. 11, 045708 (2009).
Vandenbe P. M. & Borburgh J. C. Dispersion of surface plasmons in InSb-gratings. Appl. Phys. 3, 55–60 (1974).
Oszwaldowski M. & Zimpel M. Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holed in InSb. J. Phys. Chem. Solids 49, 1179–1185 (1988).
Yang Z. X. et al.. Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors. Nanoscale 5, 9671–9676 (2013). PubMed
Li D. Y., Li H. T., Sun H. H. & Zhao L. C. Characterization of ultrathin InSb nanocrystals film deposited on SiO2/Si substrate. Nanoscale Res. Lett. 6, 601 (2011). PubMed PMC
Fedyanin D. Y., Yakubovsky D. I., Kirtaev R. V. & Volkov V. S. Ultralow-loss CMOS copper plasmonic waveguides. Nano Lett. 16, 362–366 (2016). PubMed
Ma Y. Q., Farrell G., Semenova Y. & Wu Q. Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement. Opt. Lett. 39, 973–976 (2014). PubMed
Yablonovitch E. Photonic band-gap structures. J. Opt. Soc. Am. B 10, 283–295 (1993).
Setayesh A., Mirnaziry S. R. & Abrishamian M. S. Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator. J. Opt. 13, 035004 (2011).
Smith C. L. C. et al.. Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography. Opt. Express 20, 5696–5706 (2012). PubMed
Lu H., Liu X. M., Wang G. X. & Mao D. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 23, 444003 (2012). PubMed
Shibayama. J., Shimizu K., Yamauchi J. J. & Nakano H. Surface plasmon resonance waveguide sensor in the terahertz regime. J. Lightwave Technol. 34, 2518–2525 (2016).
Rackus D. G., Shamsi M. H. & Wheeler A. R. Electrochemistry, biosensors and microfluidics: a convergence of fileds. Chem. Soc. Rev. 44, 5320–5340 (2015). PubMed
Homola J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003). PubMed
Adam T. N., Troeger R. T., Ray S. K., Lum P. C. & Kolodzeya J. Terahertz electroluminescence from boron-doped silicon devices. Appl. Phys. Lett. 83, 1713–1715 (2003).
Fujimoto Y., Yoshida H., Nakatsuka M., Ueda T. & Fujinoki A. Development of Nd-doped optical gain material based on silica glass with high thermal shock parameter for high-average-power laser. Jpn. J. Appl. Phys. 44, 1764–1770 (2005).
Rana F. Graphene terahertz plasmon oscillators. IEEE Trans. Nanotechnol. 7, 91–99 (2008).
Liu A. & Ning C. Z. Tearhertz optical gain based on intersubband transitions in optically pumped semiconductor quantum wells: Corherent pump-probe interactions. Appl. Phys. Lett. 75, 1207–1209 (1999).
Li Y. & Huang W. P. Electrially-pumped plasmonic lasers based on low-loss hybrid SPP waveguide. Opt. Express 23, 24843–24849 (2015). PubMed
Dai D. X., Shi Y. C., He S. L., Wosinski L. & Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with low-index or high-index gain medium. Opt. Express 19, 12925–12936 (2011). PubMed
Blanco S. M. G., Pollnau M. & Bozhevolnyi S. I. Loss comensaton in long-range dielectric-loaded surface plasmon-polariton waveguides. Opt. Express 19, 25298–25310 (2011). PubMed