• This record comes from PubMed

PD-1/PD-L1 inhibitors in multiple myeloma: The present and the future

. 2016 ; 5 (12) : e1254856. [epub] 20161108

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article, Review, Research Support, Non-U.S. Gov't

The introduction of PD-1/PD-L1 pathway inhibitors has marked a significant milestone in the treatment of various types of solid tumors. The current situation in multiple myeloma (MM) is rather unclear, as distinct research groups have reported discordant results. This discrepancy dominantly concerns the expression of PD-1/PD-L1 molecules as well as the identification of the responsible immune effector cell population. The results of monotherapy with PD-1/PD-L1 inhibitors have been unsatisfactory in MM, suggesting that a combination approach is needed. The most logical partners are immunomodulatory agents as they possess many synergistic effects. We are also proposing other rational and promising combinations (e.g., daratumumab, ibrutinib, anti-CD137) that warrant further investigation.

See more in PubMed

Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011; 364:1046-60; PMID:21410373; http://dx.doi.org/10.1056/NEJMra1011442 PubMed DOI

Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014; 64:9-29; PMID:24399786; http://dx.doi.org/2415758010.3322/caac.21208 PubMed DOI

Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, Kapoor P, Dingli D, Hayman SR, Leung N et al.. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia 2014; 28:1122-8; PMID:24157580; http://dx.doi.org/10.1038/leu.2013.313 PubMed DOI PMC

San Miguel J, Weisel K, Moreau P, Lacy M, Song K, Delforge M, Karlin L, Goldschmidt H, Banos A, Oriol A et al.. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol 2013; 14:1055-66; PMID:24007748; http://dx.doi.org/10.1016/S1470-2045(13)70380-2 PubMed DOI

San-Miguel JF, Hungria VTM, Yoon S-S, Beksac M, Dimopoulos MA, Elghandour A, Jedrzejczak WW, Günther A, Nakorn TN, Siritanaratkul N et al.. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol 2014; 15:1195-206; PMID:25242045; http://dx.doi.org/10.1016/S1470-2045(14)70440-1 PubMed DOI

Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, Sandhu I, Ganly P, Baker BW, Jackson SR et al.. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med 2016; 374:1621-34; PMID:27119237; http://dx.doi.org/10.1056/NEJMoa1516282 PubMed DOI

Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, Minnema MC, Lassen U, Krejcik J, Palumbo A et al.. Targeting CD38 with Daratumumab monotherapy in multiple myeloma. N Engl J Med 2015; 373:1207-19; PMID:26308596; http://dx.doi.org/10.1056/NEJMoa1506348 PubMed DOI

Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spicka I, Walter-Croneck A, Moreau P, Mateos M-V, Magen H et al.. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med 2015; 373:621-31; PMID:26035255; http://dx.doi.org/10.1056/NEJMoa1505654 PubMed DOI

Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Špička I, Oriol A, Hájek R, Rosiñol L, Siegel DS, Mihaylov GG et al.. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med 2015; 372:142-52; PMID:25482145; http://dx.doi.org/10.1056/NEJMoa1411321 PubMed DOI

Sobh M, Michallet M, Gahrton G, Iacobelli S, van Biezen A, Schönland S, Petersen E, Schaap N, Bonifazi F, Volin L et al.. Allogeneic hematopoietic cell transplantation for multiple myeloma in Europe: trends and outcomes over 25 years. A study by the EBMT Chronic Malignancies Working Party. Leukemia 2016; 30(10):2047-54; PMID:27118410; http://dx.doi.org/2615338910.1038/leu.2016.101 PubMed DOI

Ayed AO, Chang L-J, Moreb JS. Immunotherapy for multiple myeloma: Current status and future directions. Crit Rev Oncol Hematol 2015; 96:399-412; PMID:26153389; http://dx.doi.org/10.1016/j.critrevonc.2015.06.006 PubMed DOI

Jelinek T, Hajek R. Monoclonal antibodies - A new era in the treatment of multiple myeloma. Blood Rev 2016; 30:101-10; PMID:26362528; http://dx.doi.org/10.1016/j.blre.2015.08.004 PubMed DOI

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12:252-64; PMID:22437870; http://dx.doi.org/10.1038/nrc3239 PubMed DOI PMC

Armand P. Immune checkpoint blockade in hematologic malignancies. Blood 2015; 125:3393-400; PMID:25833961; http://dx.doi.org/10.1182/blood-2015-02-567453 PubMed DOI

Atanackovic D, Luetkens T, Kröger N. Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma. Leukemia 2014; 28:993-1000; PMID:24153012; http://dx.doi.org/10.1038/leu.2013.310 PubMed DOI

Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26:677-704; PMID:18173375; http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331 PubMed DOI PMC

Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC et al.. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192:1027-34; PMID:11015443; http://dx.doi.org/10.1084/jem.192.7.1027 PubMed DOI PMC

Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005; 25:9543-53; PMID:16227604; http://dx.doi.org/10.1128/MCB.25.21.9543-9553.2005 PubMed DOI PMC

Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T, Laccabue D, Zerbini A, Cavalli A, Missale G et al.. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol 2007; 81:4215-25; PMID:17287266; http://dx.doi.org/10.1128/JVI.02844-06 PubMed DOI PMC

Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C et al.. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006; 443:350-4; PMID:16921384; http://dx.doi.org/10.1038/nature05115 PubMed DOI

Brahmer J, Reckamp KL, Baas P, L Crinò, Eberhardt WEE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E et al.. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015; 373:123-35; PMID:26028407; http://dx.doi.org/10.1056/NEJMoa1504627 PubMed DOI PMC

Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P et al.. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373:23-34; PMID:26027431; http://dx.doi.org/10.1056/NEJMoa1504030 PubMed DOI PMC

Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER et al.. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015; 373:1803-13; PMID:26406148; http://dx.doi.org/10.1056/NEJMoa1510665 PubMed DOI PMC

Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E et al.. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372:320-30; PMID:25399552; http://dx.doi.org/10.1056/NEJMoa1412082 PubMed DOI

Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ et al.. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 2015; 372:311-9; PMID:25482239; http://dx.doi.org/10.1056/NEJMoa1411087 PubMed DOI PMC

Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, Saudemont A, Quesnel B. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007; 110:296-304; PMID:17363736; http://dx.doi.org/10.1182/blood-2006-10-051482 PubMed DOI

Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A, Hyodo H, Shinya E, Takahashi H, Dong H et al.. Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 2013; 27:464-72; PMID:22828443; http://dx.doi.org/10.1038/leu.2012.213 PubMed DOI

Ray A, Das DS, Song Y, Richardson P, Munshi NC, Chauhan D, Anderson KC. Targeting PD1-PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia 2015; 29:1441-4; PMID:25634684; http://dx.doi.org/10.1038/leu.2015.11 PubMed DOI PMC

Hallett WHD, Jing W, Drobyski WR, Johnson BD. Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 2011; 17:1133-45; PMID:21536144; http://dx.doi.org/2646822810.1016/j.bbmt.2011.03.011 PubMed DOI

Görgün G, Samur MK, Cowens KB, Paula S, Bianchi G, Anderson JE, White RE, Singh A, Ohguchi H, Suzuki R et al.. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin Cancer Res Off J Am Assoc Cancer Res 2015; 21:4607-18; PMID:25979485; http://dx.doi.org/2646822810.1158/1078-0432.CCR-15-0200 PubMed DOI PMC

Dhodapkar MV, Sexton R, Das R, Dhodapkar KM, Zhang L, Sundaram R, Soni S, Crowley JJ, Orlowski RZ, Barlogie B. Prospective analysis of antigen-specific immunity, stem-cell antigens, and immune checkpoints in monoclonal gammopathy. Blood 2015; 126:2475-8; PMID:26468228; http://dx.doi.org/10.1182/blood-2015-03-632919 PubMed DOI PMC

Paiva B, Azpilikueta A, Puig N, Ocio EM, Sharma R, Oyajobi BO, Labiano S, San-Segundo L, Rodriguez A, Aires-Mejia I et al.. PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma. Leukemia 2015; 29:2110-3; PMID:25778100; http://dx.doi.org/10.1038/leu.2015.79 PubMed DOI

Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, Joyce RM, Wellenstein K, Keefe W, Schickler M et al.. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother Hagerstown Md 2011; 34:409-18; PMID:21577144; http://dx.doi.org/2046050110.1097/CJI.0b013e31821ca6ce PubMed DOI PMC

Benson DM, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, Baiocchi RA, Zhang J, Yu J, Smith MK et al.. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti–PD-1 antibody. Blood 2010; 116:2286-94; PMID:20460501; http://dx.doi.org/10.1182/blood-2010-02-271874 PubMed DOI PMC

Kearl TJ, Jing W, Gershan JA, Johnson BD. Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma. J Immunol Baltim Md 2013; 190:5620-8; PMID:23616570; http://dx.doi.org/2272725210.4049/jimmunol.1202005 PubMed DOI PMC

Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, Millenson MM, Cohen AD, Schuster SJ, Lebovic D et al.. Nivolumab in patients with relapsed or refractory hematologic malignancy: Preliminary results of a Phase Ib study. J Clin Oncol 2016; 34(23):2698-704; PMID:27269947; http://dx.doi.org/2272725210.1200/JCO.2015.65.9789 PubMed DOI PMC

Mateos M-V, Orlowski RZ, Siegel DS, Reece D, Moreau P, San-Miguel JF. Pembrolizumab in combination with lenalidomide and low-dose dexamethasone for relapsed/refractory multiple myeloma (RRMM): Final efficacy and safety analysis. J Clin Oncol [Internet] 2016. [cited 2016 Jul 25]; Available from: http://meetinglibrary.asco.org/content/167184-176

Efebera YA, Rosko A, Hofmeister CC, Benner J, Bakan C, Benson DM. Paper: First Interim Results of a Phase I/II Study of Lenalidomide in Combination with Anti-PD-1 Monoclonal Antibody MDV9300 (CT-011) in Patients with Relapsed/Refractory Multiple Myeloma [Internet]. Orlando, USA 2015. [cited 2016 Jul 25]. Available from: https://ash.confex.com/ash/2015/webprogram/Paper81417.html

Rosenblatt J, Avivi I, Binyamini N, Uhl L, Somayia P, Stroopinsky D, Avigan D. Paper: Blockade of PD-1 in combination with dendritic cell/myeloma fusion cell vaccination following autologous stem cell transplantation is well tolerated, induces anti-tumor immunity and may lead to eradication of measureable disease [Internet] Orlando, USA: 2015. [cited 2016 Jul 25]. Available from: https://ash.confex.com/ash/2015/webprogram/Paper80695.html

Sedlarikova L, Kubiczkova L, Sevcikova S, Hajek R. Mechanism of immunomodulatory drugs in multiple myeloma. Leuk Res 2012; 36:1218-24; PMID:22727252; http://dx.doi.org/10.1016/j.leukres.2012.05.010 PubMed DOI

Azpilikueta A, Agorreta J, Labiano S, Pérez-Gracia JL, Sánchez-Paulete AR, Aznar MA, Ajona D, Gil-Bazo I, Larrayoz M, Teijeira A et al.. Successful immunotherapy against a transplantable mouse squamous lung carcinoma with anti-pd-1 and anti-cd137 monoclonal antibodies. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 2016; 11:524-36; PMID:26845193; http://dx.doi.org/2744071110.1016/j.jtho.2016.01.013 PubMed DOI

Morales-Kastresana A, Sanmamed MF, Rodriguez I, Palazon A, Martinez-Forero I, Labiano S, Hervas-Stubbs S, Sangro B, Ochoa C, Rouzaut A et al.. Combined immunostimulatory monoclonal antibodies extend survival in an aggressive transgenic hepatocellular carcinoma mouse model. Clin Cancer Res Off J Am Assoc Cancer Res 2013; 19:6151-62; PMID:24030703; http://dx.doi.org/2744071110.1158/1078-0432.CCR-13-1189 PubMed DOI

Ishibashi M, Tamura H, Sunakawa M, Kondo-Onodera A, Okuyama N, Hamada Y, Moriya K, Choi I, Tamada K, Inokuchi K. Myeloma drug resistance induced by binding of myeloma B7-H1 (PD-L1) to PD-1. Cancer Immunol Res 2016; 4(9):779-88; PMID:27440711; http://dx.doi.org/10.1158/2326-6066.CIR-15-0296 PubMed DOI

Sagiv-Barfi I, Kohrt HEK, Czerwinski DK, Ng PP, Chang BY, Levy R. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci U S A 2015; 112:E966-72; PMID:25730880; http://dx.doi.org/10.1073/pnas.1500712112 PubMed DOI PMC

Ngiow SF, McArthur GA, Smyth MJ. Radiotherapy complements immune checkpoint blockade. Cancer Cell 2015; 27:437-8; PMID:25873170; http://dx.doi.org/10.1016/j.ccell.2015.03.015 PubMed DOI

Twyman-Saint\sVictor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM et al.. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015; 520:373-7; PMID:25754329; http://dx.doi.org/10.1038/nature14292 PubMed DOI PMC

Binder DC, Fu Y-X, Weichselbaum RR. Radiotherapy and immune checkpoint blockade: potential interactions and future directions. Trends Mol Med 2015; 21:463-5; PMID:26091823; http://dx.doi.org/10.1016/j.molmed.2015.05.007 PubMed DOI

Spisek R, Dhodapkar MV. Towards a better way to die with chemotherapy: role of heat shock protein exposure on dying tumor cells. Cell Cycle Georget Tex 2007; 6:1962-5; PMID:17721082; http://dx.doi.org/2646401510.4161/cc.6.16.4601 PubMed DOI

Chung DJ, Pronschinske KB, Shyer JA, Sharma S, Leung S, Curran SA, Lesokhin AM, Devlin SM, Giralt SA, Young JW. T-cell exhaustion in multiple myeloma relapse after Autotransplant: Optimal timing of immunotherapy. Cancer Immunol Res 2016; 4:61-71; PMID:26464015; http://dx.doi.org/10.1158/2326-6066.CIR-15-0055 PubMed DOI PMC

Shien K, Papadimitrakopoulou VA, Wistuba II. Predictive biomarkers of response to PD-1/PD-L1 immune checkpoint inhibitors in non-small cell lung cancer. Lung Cancer Amst Neth 2016; 99:79-87; PMID:27565919; http://dx.doi.org/2460526910.1016/j.lungcan.2016.06.016 PubMed DOI PMC

Champiat S, C Ferté, Lebel-Binay S, Eggermont A, Soria JC. Exomics and immunogenics: Bridging mutational load and immune checkpoints efficacy. Oncoimmunology 2014; 3:e27817; PMID:24605269; http://dx.doi.org/10.4161/onci.27817 PubMed DOI PMC

Atanackovic D, Luetkens T, Kröger N. Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma. Leukemia 2014; 28:993-1000; PMID:24153012; http://dx.doi.org/10.1038/leu.2013.310 PubMed DOI

Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol 2013; 25:214-21; PMID:23298609; http://dx.doi.org/10.1016/j.coi.2012.12.003 PubMed DOI PMC

Suen H, Brown R, Yang S, Weatherburn C, Ho PJ, Woodland N, Nassif N, Barbaro P, Bryant C, Hart D et al.. Multiple myeloma causes clonal T cell immunosenescence: Identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia [Internet] 2016; 30(8):1716-24; PMID:27102208; http://dx.doi.org/10.1038/leu.2016.84 PubMed DOI

Dimopoulos MA, Oriol A, Nahi H, San Miguel JF, Bahlis NJ, Moreau P. AN open-label, randomised phase 3 study of daratumumab, lenalidomide, and dexamethasone (drd) versus lenalidomide and dexamethasone (rd) in relapsed or refractory multiple myeloma (rrmm): pollux [internet]. Vienna, Austria: 2016. [cited 2016 Jul 27]. Available from: http://learningcenter.ehaweb.org/eha/2016/21st/135349/meletios.a.dimopoulos.an.open-label.randomised.phase.3.study.of.daratumumab.html?f=m3

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...