Performance comparison of three trypsin columns used in liquid chromatography
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 DK101473
NIDDK NIH HHS - United States
U24 DK097153
NIDDK NIH HHS - United States
PubMed
28215403
PubMed Central
PMC5497570
DOI
10.1016/j.chroma.2017.02.024
PII: S0021-9673(17)30247-9
Knihovny.cz E-zdroje
- Klíčová slova
- Activity, Digestion efficiency, Immobilized enzymatic reactor, Trypsin,
- MeSH
- chromatografie kapalinová * přístrojové vybavení metody MeSH
- enzymy imobilizované * chemie metabolismus MeSH
- trypsin * chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- enzymy imobilizované * MeSH
- trypsin * MeSH
Trypsin is the most widely used enzyme in proteomic research due to its high specificity. Although the in-solution digestion is predominantly used, it has several drawbacks, such as long digestion times, autolysis, and intolerance to high temperatures or organic solvents. To overcome these shortcomings trypsin was covalently immobilized on solid support and tested for its proteolytic activity. Trypsin was immobilized on bridge-ethyl hybrid silica sorbent with 300Å pores, packed in 2.1×30mm column and compared with Perfinity and Poroszyme trypsin columns. Catalytic efficiency of enzymatic reactors was tested using Nα-Benzoyl-l-arginine 4-nitroanilide hydrochloride as a substrate. The impact of buffer pH, mobile phase flow rate, and temperature on enzymatic activity was investigated. Digestion speed generally increased with the temperature from 20 to 37°C. Digestion speed also increased with pH from 7.0 to 9.0; the activity of prototype enzyme reactor was highest at pH 9.0, when it activity exceeded both commercial reactors. Preliminary data for fast protein digestion are presented.
Zobrazit více v PubMed
Keil B. Specificity of Proteolysis. Springer-Verlag; New York: 1992.
Stefansson B, Helgadottir L, Olafsdottir S, Gudmundsdottir A, Bjarnason JB. Characterization of cold-adapted Atlantic cod (Gadus morhua) trypsin I-kinetic parameters, autolysis and thermal stability. Comp Biochem Physiol B Biochem Mol Biol. 2010;155:186–194. PubMed
Slysz GW, Schriemer DC. On-column digestion of proteins in aqueous-organic solvents. Rapid Commun Mass Spectrom. 2003;17:1044–1050. PubMed
Slechtova T, Gilar M, Kalikova K, Tesarova E. Insight into trypsin miscleavage: comparison of kinetic constants of problematic peptide sequences. Anal Chem. 2015;87:7636–7643. PubMed
Monigatti F, Berndt P. Algorithm for accurate similarity measurements of peptide mass fingerprints and its application. J Am Soc Mass Spectrom. 2005;16:13–21. PubMed
Yen CY, Russell S, Mendoza AM, Meyer-Arendt K, Sun S, Cios KJ, Ahn NG, Resing KA. Improving sensitivity in shotgun proteomics using a peptide-centric database with reduced complexity: protease cleavage and SCX elution rules from data mining of MS/MS spectra. Anal Chem. 2006;78:1071–1084. PubMed
Moore S, Hess S, Jorgenson J. Characterization of an immobilized enzyme reactor for on-line protein digestion. J Chromatogr A. 2016;1476:1–8. PubMed PMC
Krenkova J, Lacher NA, Svec F. Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies. Anal Chem. 2009;81:2004–2012. PubMed
Safdar M, Spross J, Janis J. Microscale immobilized enzyme reactors in proteomics: latest developments. J Chromatogr A. 2014;1324:1–10. PubMed
Freije JR, Mulder PP, Werkman W, Rieux L, Niederlander HA, Verpoorte E, Bischoff R. Chemically modified, immobilized trypsin reactor with improved digestion efficiency. J Proteome Res. 2005;4:1805–1813. PubMed
Hsieh YL, Wang H, Elicone C, Mark J, Martin SA, Regnier F. Automated analytical system for the examination of protein primary structure. Anal Chem. 1996;68:455–462. PubMed
Ruan G, Wei M, Chen Z, Su R, Du F, Zheng Y. Novel regenerative large-volume immobilized enzyme reactor: preparation, characterization and applicatio. J Chromatogr B Anal Technol Biomed Life Sci. 2014;967:13–20. PubMed
Ma J, Zhang L, Liang Z, Zhang W, Zhang Y. Recent advances in immobilized enzymatic reactors and their applications in proteome analysis. Anal Chim Acta. 2009;632:1–8. PubMed
Qiao J, Kim JY, Wang YY, Qi L, Wang FY, Moon MH. Trypsin immobilization in ordered porous polymer membranes for effective protein digestion. Anal Chim Acta. 2016;906:156–164. PubMed
Savino R, Casadonte F, Terracciano R. In mesopore protein digestion: a new forthcoming strategy in proteomics. Molecules. 2011;16:5938–5962. PubMed PMC
Lombardo CR, Consler TG, Kassel DB. In vitro phosphorylation of the epidermal growth factor receptor autophosphorylation domain by c-src: identification of phosphorylation sites and c-src SH2 domain binding sites. Biochemistry. 1995;34:16456–16466. PubMed
Boerner RJ, Kassel DB, Barker SC, Ellis B, DeLacy P, Knight WB. Correlation of the phosphorylation states of pp60c-src with tyrosine kinase activity: the intramolecular pY530-SH2 complex retains significant activity if Y419 is phosphorylated. Biochemistry. 1996;35:9519–9525. PubMed
Nadler T, Blackburn C, Mark J, Gordon N, Regnier FE. Automated proteolytic mapping of proteins. J Chromatogr A. 1996;743:91–98.
van der Donk WA, Zeng C, Biemann K, Stubbe J, Hanlon A, Kyte J. Identification of an active site residue of the R1 subunit of ribonucleotide reductase from Escherichia coli: characterization of substrate-induced polypeptide cleavage by C225SR1. Biochemistry. 1996;35:10058–10067. PubMed
Lebrun B, Romi-Lebrun R, Martin-Eauclaire MF, Yasuda A, Ishiguro M, Oyama Y, Pongs O, Nakajima T. A four-disulphide-bridged toxin, with high affinity towards voltage-gated K+ channels, isolated from Heterometrus spinnifer (Scorpionidae) venom. Biochem J. 1997;328(Pt 1):321–327. PubMed PMC
Blackburn RK, Anderegg RJ. Characterization of femtomole levels of proteins in solution using rapid proteolysis and nanoelectrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 1997;8:483–494.
Richards GP, Liang YM, Chao J, Chao L. Purification, characterization and activation of fish muscle prokallikrein. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1997;118:39–48. PubMed
Fukuda H, Irie K, Nakahara A, Ohigashi H, Wender PA. Solid-phase synthesis mass spectrometric analysis of the zinc-folding, and phorbol ester-binding studies of the 116-mer peptide containing the tandem cysteine-rich C1 domains of protein kinase C gamma. Bioorg Med Chem. 1999;7:1213–1221. PubMed
Rocklin RD, Ramsey RS, Ramsey JM. A microfabricated fluidic device for performing two-dimensional liquid-phase separations. Anal Chem. 2000;72:5244–5249. PubMed
Hara S, Katta V, Lu HS. Peptide map procedure using immobilized protease cartridges in tandem for disulfide linkage identification of neu differentiation factor epidermal growth factor domain. J Chromatogr A. 2000;867:151–160. PubMed
Riggs L, Sioma C, Regnier FE. Automated signature peptide approach for proteomics. J Chromatogr A. 2001;924:359–368. PubMed
Vecchione G, Casetta B, Santacroce R, Margaglione M. A comprehensive on-line digestion-liquid chromatography/mass spectrometry/collision-induced dissociation mass spectrometry approach for the characterization of human fibrinogen. Rapid Commun Mass Spectrom. 2001;15:1383–1390. PubMed
Canarelli S, Fisch I, Freitag R. Hyphenation of multi-dimensional chromatography and mass spectrometry for the at-line-analysis of the integrity of recombinant protein drugs. J Chromatogr B. 2002;775:27–35. PubMed
Samskog J, Bylund D, Jacobsson SP, Markides KE. Miniaturized on-line proteolysis-capillary liquid chromatography-mass spectrometry for peptide mapping of lactate dehydrogenase. J Chromatogr A. 2003;998:83–91. PubMed
Carol J, Gorseling MC, de Jong CF, Lingeman H, Kientz CE, van Baar BL, Irth H. Determination of denaturated proteins and biotoxins by on-line size-exclusion chromatography-digestion-liquid chromatography-electrospray mass spectrometry. Anal Biochem. 2005;346:150–157. PubMed
Nicoli R, Gaud N, Stella C, Rudaz S, Veuthey JL. Trypsin immobilization on three monolithic disks for on-line protein digestion. J Pharm Biomed Anal. 2008;48:398–407. PubMed
Hoehenwarter W, van Dongen JT, Wienkoop S, Steinfath M, Hummel J, Erban A, Sulpice R, Regierer B, Kopka J, Geigenberger P, Weckwerth W. A rapid approach for phenotype-screening and database independent detection of cSNP/protein polymorphism using mass accuracy precursor alignment. Proteomics. 2008;8:4214–4225. PubMed
Nicoli R, Rudaz S, Stella C, Veuthey JL. Trypsin immobilization on an ethylenediamine-based monolithic minidisk for rapid on-line peptide mass fingerprinting studies. J Chromatogr A. 2009;1216:2695–2699. PubMed
Schneiderheinze J, Walden Z, Dufield R, Demarest C. Rapid online proteolytic mapping of PEGylated rhGH for identity confirmation, quantitation of methionine oxidation and quantitation of UnPEGylated N-terminus using HPLC with UV detection. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:4065–4070. PubMed
[Accessed 30 June 2016];General Product Information. www.thermofisher.com/order/catalog/product/2312800.
Hoos JS, Sudergat H, Hoelck JP, Stahl M, de Vlieger JS, Niessen WM, Lingeman H, Irth H. Selective quantitative bioanalysis of proteins in biological fluids by on-line immunoaffinity chromatography-protein digestion-liquid chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2006;830:262–269. PubMed
Cingoz A, Hugon-Chapuis F, Pichon V. Evaluation of various immobilized enzymatic microreactors coupled on-line with liquid chromatography and mass spectrometry detection for quantitative analysis of cytochrome c. J Chromatogr A. 2008;1209:95–103. PubMed
Shah V, Lassman ME, Chen Y, Zhou H, Laterza OF. Achieving efficient digestion faster with Flash Digest: potential alternative to multi-step detergent assisted in-solution digestion in quantitative proteomics experiments. Rapid Commun Mass Spectrom. 2017;31:193–199. PubMed
Rivera-Burgos D, Regnier FE. Disparities between immobilized enzyme and solution based digestion of transferrin with trypsin. J Sep Sci. 2013;36:454–460. PubMed
Jelinek CA. Characterizing the Post-translational Modifications of Human Serum Albumin as They Correlate to Cardiac Ischemia, Chapter IV: Sample Preparation Strategies for Use in Clinical MS Assays. Johns Hopkins University; Baltimore, Maryland: 2012. [Accessed 30 June 2016]. http://gradworks.umi.com/35/28/3528552.html.
Lewis E, Meyer K, Hao Z, Herold N, Bennett P. [Accessed 30 June 2016];Rapid peptide mapping via automated integration of on-line digestion, separation and mass spectrometry for the analysis of therapeutic proteins Thermo Scientific Poster Note, 06/13S. http://apps.thermoscientific.com/media/cmd/ASMS-TNG-Roadshow/TNG/resouces/805_PN_ASMS13_WP24_ELewis.pdf.
Massolini G, Calleri E. Immobilized trypsin systems coupled on-line to separation methods: recent developments and analytical applications. J Sep Sci. 2005;28:7–21. PubMed
Regnier FE, Kim J. Accelerating trypsin digestion: the immobilized enzyme reactor. Bioanalysis. 2014;6:2685–2698. PubMed
Yamaguchi H, Miyazaki M. Enzyme-immobilized reactors for rapid and efficient sample preparation in MS-based proteomic studies. Proteomics. 2013;13:457–466. PubMed
Yu YQ, Gilar M, Gebler JC. A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin. Rapid Commun Mass Spectrom. 2004;18:711–715. PubMed
Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC. Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal Chem. 2003;75:6023–6028. PubMed
Ahn J, Jung MC, Wyndham K, Yu YQ, Engen JR. Pepsin immobilized on high-strength hybrid particles for continuous flow online digestion at 10,000 psi. Anal Chem. 2012;84:7256–7262. PubMed PMC
Hermanson GT. Bioconjugate Techniques. Academic Press; San Diego, California: 1996.
Subirats X, Rosés M, Bosch E. On the effect of organic solvent composition on the pH of buffered HPLC mobile phases and the pKa of analytes—a review. Sep Purif Rev. 2007;36:231–255.
[Accessed 30 June 2016];Trypsin, general informations. www.sigmaaldrich.com/life-science/metabolomics/enzyme-explorer/analytical-enzymes/trypsin.html.
Introduction to Enzymes. Worthington Biochemical Corporation; 2015. [Accessed 30 June 2016]. www.worthington-biochem.com/introbiochem/Enzymes.pdf.