The acceleration of cardiomyogenesis in embryonic stem cells in vitro by serum depletion does not increase the number of developed cardiomyocytes

. 2017 ; 12 (3) : e0173140. [epub] 20170313

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28288171

The differentiation of pluripotent embryonic stem (ES) cells into various lineages in vitro represents an important tool for studying the mechanisms underlying mammalian embryogenesis. It is a key technique in studies evaluating the molecular mechanisms of cardiomyogenesis and heart development and also in embryotoxicology. Herein, modest modifications of the basic protocol for ES cell differentiation into cardiomyocytes were evaluated in order to increase the yield and differentiation status of developed cardiomyocytes. Primarily, the data show that ES cell cultivation in the form of non-adherent embryoid bodies (EBs) for 5 days compared to 8 days significantly improved cardiomyogenic differentiation. This is illustrated by the appearance of beating foci in the adherent EBs layer at earlier phases of differentiation from day 10 up to day 16 and by the significantly higher expression of genes characteristic of cardiomyogenic differentiation (sarcomeric alpha actinin, myosin heavy chain alpha and beta, myosin light chain 2 and 7, and transcriptional factor Nkx2.5) in EBs cultivated under non-adherent conditions for 5 days. The ratio of cardiomyocytes per other cells was also potentiated in EBs cultivated in non-adherent conditions for only 5 days followed by cultivation in adherent serum-free culture conditions. Nevertheless, the alteration in the percentage of beating foci among these two tested cultivation conditions vanished at later phases and also did not affect the total number of cardiomyocytes determined as myosin heavy chain positive cells at the end of the differentiation process on day 20. Thus, although these modifications of the conditions of ES cells differentiation may intensify cardiomyocyte differentiation, the final count of cardiomyocytes might not change. Thus, serum depletion was identified as a key factor that intensified cardiomyogenesis. Further, the treatment of EBs with N-acetylcysteine, a reactive oxygen species scavenger, did not affect the observed increase in cardiomyogenesis under serum depleted conditions. Interestingly, a mild induction of the ventricular-like phenotype of cardiomyocytes was observed in 5-day-old EBs compared to 8-day-old EBs. Overall, these findings bring crucial information on the mechanisms of ES cells differentiation into cardiomyocytes and on the establishment of efficient protocols for the cardiomyogenic differentiation of ES cells. Further, the importance of determining the absolute number of formed cardiomyocyte-like cells per seeded pluripotent cells in contrast to the simple quantification of the ratios of cells is highlighted.

Zobrazit více v PubMed

Garbern JC, Mummery CL, Lee RT. Model systems for cardiovascular regenerative biology. Cold Spring Harb Perspect Med. 2013;3(4):a014019 Epub 2013/04/03. 10.1101/cshperspect.a014019 PubMed DOI PMC

Moretti A, Laugwitz KL, Dorn T, Sinnecker D, Mummery C. Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med. 2013;3(11). Epub 2013/11/05. PubMed PMC

Prochazkova J, Kabatkova M, Smerdova L, Pachernik J, Sykorova D, Kohoutek J, et al. Aryl hydrocarbon receptor negatively regulates expression of the plakoglobin gene (jup). Toxicol Sci. 2013;134(2):258–70. Epub 2013/05/22. 10.1093/toxsci/kft110 PubMed DOI

Mahmoud AI, Porrello ER. Turning back the cardiac regenerative clock: lessons from the neonate. Trends Cardiovasc Med. 2012;22(5):128–33. Epub 2012/08/21. 10.1016/j.tcm.2012.07.008 PubMed DOI

Liao SY, Tse HF. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons? Stem Cell Res Ther. 2014;4(6):151. Epub 2014/01/31. PubMed PMC

Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002;91(3):189–201. Epub 2002/08/10. PubMed

Zeineddine D, Papadimou E, Mery A, Menard C, Puceat M. Cardiac commitment of embryonic stem cells for myocardial repair. Methods Mol Med. 2005;112:175–82. Epub 2005/07/13. PubMed

David R, Franz WM. From pluripotency to distinct cardiomyocyte subtypes. Physiology (Bethesda). 2012;27(3):119–29. Epub 2012/06/13. PubMed

Rajasingh J, Bord E, Hamada H, Lambers E, Qin G, Losordo DW, et al. STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res. 2007;101(9):910–8. Epub 2007/09/08. 10.1161/CIRCRESAHA.107.156786 PubMed DOI

Vesela I, Kotasova H, Jankovska S, Prochazkova J, Pachernik J. Leukaemia inhibitory factor inhibits cardiomyogenesis of mouse embryonic stem cells via STAT3 activation. Folia Biol (Praha). 2010;56(4):165–72. Epub 2010/10/27. PubMed

Wiles MV, Johansson BM. Embryonic stem cell development in a chemically defined medium. Exp Cell Res. 1999;247(1):241–8. Epub 1999/02/27. 10.1006/excr.1998.4353 PubMed DOI

Pachernik J, Esner M, Bryja V, Dvorak P, Hampl A. Neural differentiation of mouse embryonic stem cells grown in monolayer. Reprod Nutr Dev. 2002;42(4):317–26. Epub 2003/01/04. PubMed

Pachernik J, Bryja V, Esner M, Kubala L, Dvorak P, Hampl A. Neural differentiation of pluripotent mouse embryonal carcinoma cells by retinoic acid: inhibitory effect of serum. Physiol Res. 2005;54(1):115–22. Epub 2005/02/19. PubMed

Passier R, Oostwaard DW, Snapper J, Kloots J, Hassink RJ, Kuijk E, et al. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells. 2005;23(6):772–80. Epub 2005/05/27. 10.1634/stemcells.2004-0184 PubMed DOI

Yamasaki S, Nabeshima K, Sotomaru Y, Taguchi Y, Mukasa H, Furue MK, et al. Long-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium. Int J Dev Biol. 2013;57(9–10):715–24. Epub 2013/12/07. 10.1387/ijdb.130173to PubMed DOI

Gissel C, Doss MX, Hippler-Altenburg R, Hescheler J, Sachinidis A. Generation and characterization of cardiomyocytes under serum-free conditions. Methods Mol Biol. 2006;330:191–219. Epub 2006/07/19. 10.1385/1-59745-036-7:191 PubMed DOI

Taha MF, Valojerdi MR, Mowla SJ. Effect of bone morphogenetic protein-4 (BMP-4) on cardiomyocyte differentiation from mouse embryonic stem cell. Int J Cardiol. 2007;120(1):92–101. Epub 2006/12/13. 10.1016/j.ijcard.2006.08.118 PubMed DOI

Hao J, Daleo MA, Murphy CK, Yu PB, Ho JN, Hu J, et al. Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One. 2008;3(8):e2904 Epub 2008/08/07. 10.1371/journal.pone.0002904 PubMed DOI PMC

Ao A, Hao J, Hopkins CR, Hong CC. DMH1, a novel BMP small molecule inhibitor, increases cardiomyocyte progenitors and promotes cardiac differentiation in mouse embryonic stem cells. PLoS One. 2012;7(7):e41627 Epub 2012/08/01. 10.1371/journal.pone.0041627 PubMed DOI PMC

Kwon C, Arnold J, Hsiao EC, Taketo MM, Conklin BR, Srivastava D. Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci U S A. 2007;104(26):10894–9. Epub 2007/06/20. 10.1073/pnas.0704044104 PubMed DOI PMC

Tran TH, Wang X, Browne C, Zhang Y, Schinke M, Izumo S, et al. Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells. 2009;27(8):1869–78. Epub 2009/06/23. 10.1002/stem.95 PubMed DOI

Sauer H, Rahimi G, Hescheler J, Wartenberg M. Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett. 2000;476(3):218–23. Epub 2000/07/29. PubMed

Sauer H, Neukirchen W, Rahimi G, Grunheck F, Hescheler J, Wartenberg M. Involvement of reactive oxygen species in cardiotrophin-1-induced proliferation of cardiomyocytes differentiated from murine embryonic stem cells. Exp Cell Res. 2004;294(2):313–24. Epub 2004/03/17. 10.1016/j.yexcr.2003.10.032 PubMed DOI

Satoh T, Sakai N, Enokido Y, Uchiyama Y, Hatanaka H. Survival factor-insensitive generation of reactive oxygen species induced by serum deprivation in neuronal cells. Brain Res. 1996;733(1):9–14. Epub 1996/09/09. PubMed

Konopka R, Kubala L, Lojek A, Pachernik J. Alternation of retinoic acid induced neural differentiation of P19 embryonal carcinoma cells by reduction of reactive oxygen species intracellular production. Neuro Endocrinol Lett. 2008;29(5):770–4. Epub 2008/11/07. PubMed

Lee SB, Kim JJ, Kim TW, Kim BS, Lee MS, Yoo YD. Serum deprivation-induced reactive oxygen species production is mediated by Romo1. Apoptosis. 2010;15(2):204–18. Epub 2009/11/12. 10.1007/s10495-009-0411-1 PubMed DOI

Kotasova H, Vesela I, Kucera J, Houdek Z, Prochazkova J, Kralickova M, et al. Phosphoinositide 3-kinase inhibition enables retinoic acid-induced neurogenesis in monolayer culture of embryonic stem cells. J Cell Biochem. 2012;113(2):563–70. Epub 2011/09/29. 10.1002/jcb.23380 PubMed DOI

Hsiao EC, Yoshinaga Y, Nguyen TD, Musone SL, Kim JE, Swinton P, et al. Marking embryonic stem cells with a 2A self-cleaving peptide: a NKX2-5 emerald GFP BAC reporter. PLoS One. 2008;3(7):e2532 Epub 2008/07/04. 10.1371/journal.pone.0002532 PubMed DOI PMC

Klug MG, Soonpaa MH, Koh GY, Field LJ. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest. 1996;98(1):216–24. Epub 1996/07/01. 10.1172/JCI118769 PubMed DOI PMC

Radaszkiewicz KA, Sykorova D, Karas P, Kudova J, Kohut L, Bino L, et al. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro. Rev Sci Instrum. 2016;87(2):024301 Epub 2016/03/05. 10.1063/1.4941776 PubMed DOI

Konopka R, Hyzdalova M, Kubala L, Pachernik J. New luminescence-based approach to measurement of luciferase gene expression reporter activity and adenosine triphosphate-based determination of cell viability. Folia Biol (Praha). 2010;56(2):66–71. Epub 2010/05/25. PubMed

Kudova J, Prochazkova J, Vasicek O, Perecko T, Sedlackova M, Pesl M, et al. HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells. PLoS One. 2016;11(6):e0158358 Epub 2016/06/30. 10.1371/journal.pone.0158358 PubMed DOI PMC

Bebarova M, Matejovic P, Pasek M, Horakova Z, Hosek J, Simurdova M, et al. Effect of ethanol at clinically relevant concentrations on atrial inward rectifier potassium current sensitive to acetylcholine. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(10):1049–58. Epub 2016/07/03. 10.1007/s00210-016-1265-z PubMed DOI

Stummann TC, Wronski M, Sobanski T, Kumpfmueller B, Hareng L, Bremer S, et al. Digital movie analysis for quantification of beating frequencies, chronotropic effects, and beating areas in cardiomyocyte cultures. Assay Drug Dev Technol. 2008;6(3):375–85. Epub 2008/06/06. 10.1089/adt.2008.129 PubMed DOI

Franco D, Lamers WH, Moorman AF. Patterns of expression in the developing myocardium: towards a morphologically integrated transcriptional model. Cardiovasc Res. 1998;38(1):25–53. Epub 1998/07/31. PubMed

Kolossov E, Lu Z, Drobinskaya I, Gassanov N, Duan Y, Sauer H, et al. Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J. 2005;19(6):577–9. Epub 2005/01/22. 10.1096/fj.03-1451fje PubMed DOI

England J, Loughna S. Heavy and light roles: myosin in the morphogenesis of the heart. Cell Mol Life Sci. 2013;70(7):1221–39. Epub 2012/09/08. 10.1007/s00018-012-1131-1 PubMed DOI PMC

Schmelter M, Ateghang B, Helmig S, Wartenberg M, Sauer H. Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J. 2006;20(8):1182–4. Epub 2006/04/26. 10.1096/fj.05-4723fje PubMed DOI

Sauer H, Ruhe C, Muller JP, Schmelter M, D'Souza R, Wartenberg M. Reactive oxygen species and upregulation of NADPH oxidases in mechanotransduction of embryonic stem cells. Methods Mol Biol. 2008;477:397–418. Epub 2008/12/17. 10.1007/978-1-60327-517-0_30 PubMed DOI

Bruce SJ, Gardiner BB, Burke LJ, Gongora MM, Grimmond SM, Perkins AC. Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeBMP4 culture. BMC Genomics. 2007;8:365 Epub 2007/10/11. 10.1186/1471-2164-8-365 PubMed DOI PMC

Gopalan SM, Flaim C, Bhatia SN, Hoshijima M, Knoell R, Chien KR, et al. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol Bioeng. 2003;81(5):578–87. Epub 2003/01/07. 10.1002/bit.10506 PubMed DOI

Mansour H, de Tombe PP, Samarel AM, Russell B. Restoration of resting sarcomere length after uniaxial static strain is regulated by protein kinase Cepsilon and focal adhesion kinase. Circ Res. 2004;94(5):642–9. Epub 2004/02/14. 10.1161/01.RES.0000121101.32286.C8 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...