Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer's disease
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28634681
PubMed Central
PMC11107647
DOI
10.1007/s00018-017-2574-1
PII: 10.1007/s00018-017-2574-1
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Microtubule, Microtubule affinity-regulating kinases, Neurodegeneration, Neurofibrillary tangles, Protein kinase, Tau hyperphosphorylation,
- MeSH
- Alzheimerova nemoc farmakoterapie metabolismus patologie MeSH
- antigeny bakteriální terapeutické užití MeSH
- azepiny chemie terapeutické užití MeSH
- bakteriální proteiny terapeutické užití MeSH
- inhibitory proteinkinas chemie terapeutické užití MeSH
- lidé MeSH
- methylenová modř chemie terapeutické užití MeSH
- neurony metabolismus MeSH
- protein-serin-threoninkinasy antagonisté a inhibitory metabolismus MeSH
- proteiny tau antagonisté a inhibitory metabolismus MeSH
- pyrazoly chemie terapeutické užití MeSH
- pyridiny chemie terapeutické užití MeSH
- pyrroly chemie terapeutické užití MeSH
- staurosporin chemie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antigeny bakteriální MeSH
- azepiny MeSH
- bakteriální proteiny MeSH
- cagA protein, Helicobacter pylori MeSH Prohlížeč
- hymenialdisine MeSH Prohlížeč
- inhibitory proteinkinas MeSH
- methylenová modř MeSH
- protein-serin-threoninkinasy MeSH
- proteiny tau MeSH
- pyrazolopyridine MeSH Prohlížeč
- pyrazoly MeSH
- pyridiny MeSH
- pyrroly MeSH
- staurosporin MeSH
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects normal functions of the brain. Currently, AD is one of the leading causes of death in developed countries and the only one of the top ten diseases without a means to prevent, cure, or significantly slow down its progression. Therefore, newer therapeutic concepts are urgently needed to improve survival and the quality of life of AD patients. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neurons. However, their role in hyperphosphorylation of tau makes them potential druggable target for AD therapy. Despite the relevance of MARKs in AD pathogenesis, only a few small molecules are known to have anti-MARK activity and not much has been done to progress these compounds into therapeutic candidates. But given the diverse role of MARKs, the specificity of novel inhibitors is imperative for their successful translation from bench to bedside. In this regard, a recent co-crystal structure of MARK4 in association with a pyrazolopyrimidine-based inhibitor offers a potential scaffold for the development of more specific MARK inhibitors. In this manuscript, we review the biological role of MARKs in health and disease, and draw attention to the largely unexplored area of MARK inhibitors for AD.
Zobrazit více v PubMed
Tayeb HO, Yang HD, Price BH, Tarazi FI. Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol Ther. 2012;134:8–25. doi: 10.1016/j.pharmthera.2011.12.002. PubMed DOI
Braak H, Del Tredici K. Potential pathways of abnormal tau and α-synuclein dissemination in sporadic Alzheimer’s and Parkinson’s diseases. Cold Spring Harb Perspect Biol. 2016 PubMed PMC
Minati L, Edginton T, Grazia Bruzzone M, Giaccone G. Reviews: Current concepts in Alzheimer’s disease: a multidisciplinary review. Am J Alzheimers Dis Other Dement. 2009;24:95–121. doi: 10.1177/1533317508328602. PubMed DOI PMC
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1:a006189. doi: 10.1101/cshperspect.a006189. PubMed DOI PMC
Stone J, Casadesus G, Gustaw-Rothenberg K, et al. Frontiers in Alzheimer’s disease therapeutics. Ther Adv Chronic Dis. 2011;2:9–23. doi: 10.1177/2040622310382817. PubMed DOI PMC
Wang W-Y, Tan M-S, Yu J-T, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3:136. PubMed PMC
Kahn OI, Baas PW. Microtubules and growth cones: motors drive the turn. Trends Neurosci. 2016;39:433–440. doi: 10.1016/j.tins.2016.04.009. PubMed DOI PMC
Sarma T, Koutsouris A, Yu JZ, et al. Activation of microtubule dynamics increases neuronal growth via the nerve growth factor (NGF)- and Gαs-mediated signaling pathways. J Biol Chem. 2015;290:10045–10056. doi: 10.1074/jbc.M114.630632. PubMed DOI PMC
Billingsley ML, Kincaid RL. Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J. 1997;323:577–591. doi: 10.1042/bj3230577. PubMed DOI PMC
Di J, Cohen LS, Corbo CP, et al. Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss. Sci Rep. 2016;6:20833. doi: 10.1038/srep20833. PubMed DOI PMC
Mietelska-Porowska A, Wasik U, Goras M, et al. Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci. 2014;15:4671–4713. doi: 10.3390/ijms15034671. PubMed DOI PMC
Thomas S, Funk K, Wan Y, et al. Dual modification of Alzheimer’s disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach. Acta Neuropathol. 2012;123:105–117. doi: 10.1007/s00401-011-0893-0. PubMed DOI PMC
Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011;58:458–471. doi: 10.1016/j.neuint.2010.12.023. PubMed DOI
Roder HM, Hutton ML. Microtubule-associated protein tau as a therapeutic target in neurodegenerative disease. Expert Opin Ther Targets. 2007;11:435–442. doi: 10.1517/14728222.11.4.435. PubMed DOI
Trinczek B, Brajenovic M, Ebneth A, Drewes G. MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes. J Biol Chem. 2004;279:5915–5923. doi: 10.1074/jbc.M304528200. PubMed DOI
Gu GJ, Lund H, Wu D, et al. Role of individual MARK isoforms in phosphorylation of tau at Ser262 in Alzheimer’s disease. Neuromol Med. 2013;15:458–469. doi: 10.1007/s12017-013-8232-3. PubMed DOI
Mandelkow E-M, Thies E, Trinczek B, et al. MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol. 2004;167:99. doi: 10.1083/jcb.200401085. PubMed DOI PMC
Matenia D, Mandelkow E-M. The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci. 2009;34:332–342. doi: 10.1016/j.tibs.2009.03.008. PubMed DOI
Naz F, Anjum F, Islam A, et al. Microtubule affinity-regulating kinase 4: structure, function, and regulation. Cell Biochem Biophys. 2013;67:485–499. doi: 10.1007/s12013-013-9550-7. PubMed DOI
Sun C, Tian L, Nie J, et al. Inactivation of MARK4, an AMP-activated protein kinase (AMPK)-related kinase, leads to insulin hypersensitivity and resistance to diet-induced obesity. J Biol Chem. 2012;287:38305–38315. doi: 10.1074/jbc.M112.388934. PubMed DOI PMC
Yamahashi Y, Saito Y, Murata-Kamiya N, Hatakeyama M. Polarity-regulating kinase partitioning-defective 1b (PAR1b) phosphorylates guanine nucleotide exchange factor H1 (GEF-H1) to regulate RhoA-dependent actin cytoskeletal reorganization. J Biol Chem. 2011;286:44576–44584. doi: 10.1074/jbc.M111.267021. PubMed DOI PMC
Kuhns S, Schmidt KN, Reymann J, et al. The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. J Cell Biol. 2013;200:505. doi: 10.1083/jcb.201206013. PubMed DOI PMC
Jenardhanan P, Mannu J, Mathur PP. The structural analysis of MARK4 and the exploration of specific inhibitors for the MARK family: a computational approach to obstruct the role of MARK4 in prostate cancer progression. Mol Biosyst. 2014;10:1845–1868. doi: 10.1039/C3MB70591A. PubMed DOI
Drewes G, Ebneth A, Preuss U, et al. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. 1997 PubMed
Moroni RF, De Biasi S, Colapietro P, et al. Distinct expression pattern of microtubule-associated protein/microtubule affinity-regulating kinase 4 in differentiated neurons. Neuroscience. 2006;143:83–94. doi: 10.1016/j.neuroscience.2006.07.052. PubMed DOI
Magnani I, Novielli C, Fontana L, et al. Differential signature of the centrosomal MARK4 isoforms in glioma. Pathology: Anal. Cell; 2011. p. 34. PubMed PMC
Kato T, Satoh S, Okabe H, et al. Isolation of a novel human gene, MARKL1, homologous to MARK3 and its involvement in hepatocellular carcinogenesis. Neoplasia N Y. 2001;3:4–9. doi: 10.1038/sj.neo.7900132. PubMed DOI PMC
Yu W, Polepalli J, Wagh D, et al. A critical role for the PAR-1/MARK-tau axis in mediating the toxic effects of Aβ on synapses and dendritic spines. Hum Mol Genet. 2012;21:1384–1390. doi: 10.1093/hmg/ddr576. PubMed DOI PMC
Chen YM, Wang QJ, Hu HS, et al. Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc Natl Acad Sci USA. 2006;103:8534–8539. doi: 10.1073/pnas.0509955103. PubMed DOI PMC
Ebneth A, Drewes G, Mandelkow E-M, Mandelkow E. Phosphorylation of MAP2c and MAP4 by MARK kinases leads to the destabilization of microtubules in cells. Cell Motil Cytoskelet. 1999;44:209–224. doi: 10.1002/(SICI)1097-0169(199911)44:3<209::AID-CM6>3.0.CO;2-4. PubMed DOI
Biernat J, Wu Y-Z, Timm T, et al. Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell. 2002;13:4013–4028. doi: 10.1091/mbc.02-03-0046. PubMed DOI PMC
Chen YM, Wang QJ, Hu HS, et al. Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc Natl Acad Sci. 2006;103:8534–8539. doi: 10.1073/pnas.0509955103. PubMed DOI PMC
Brajenovic M, Joberty G, Küster B, et al. Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J Biol Chem. 2004;279:12804–12811. doi: 10.1074/jbc.M312171200. PubMed DOI
Schmitt-Ulms G, Matenia D, Drewes G, Mandelkow E-M. Interactions of MAP/microtubule affinity regulating kinases with the adaptor complex AP-2 of clathrin-coated vesicles. Cell Motil Cytoskelet. 2009;66:661–672. doi: 10.1002/cm.20394. PubMed DOI
Rovina D, Fontana L, Monti L, et al. Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) plays a role in cell cycle progression and cytoskeletal dynamics. Eur J Cell Biol. 2014;93:355–365. doi: 10.1016/j.ejcb.2014.07.004. PubMed DOI
Butkevich E, Härtig W, Nikolov M, et al. Phosphorylation of FEZ1 by microtubule affinity regulating kinases regulates its function in presynaptic protein trafficking. Sci Rep. 2016;6:26965. doi: 10.1038/srep26965. PubMed DOI PMC
Lund H, Gustafsson E, Svensson A, et al. MARK4 and MARK3 associate with early tau phosphorylation in Alzheimer’s disease granulovacuolar degeneration bodies. Acta Neuropathol Commun. 2014;2:22. doi: 10.1186/2051-5960-2-22. PubMed DOI PMC
Dolan PJ, Johnson GV. The role of tau kinases in Alzheimer’s disease. Curr Opin Drug Discov Dev. 2010;13:595–603. PubMed PMC
Timm T, Li X-Y, Biernat J, et al. MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J. 2003;22:5090–5101. doi: 10.1093/emboj/cdg447. PubMed DOI PMC
Lizcano JM, Göransson O, Toth R, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 2004;23:833–843. doi: 10.1038/sj.emboj.7600110. PubMed DOI PMC
Lee S, Wang J-W, Yu W, Lu B. Phospho-dependent ubiquitination and degradation of PAR-1 regulates synaptic morphology and tau-mediated Aβ toxicity in Drosophila. Nat Commun. 2012;3:1312. doi: 10.1038/ncomms2278. PubMed DOI PMC
Bernard LP, Zhang H. MARK/Par1 kinase is activated downstream of NMDA receptors through a PKA-dependent mechanism. PLoS One. 2015;10:e0124816. doi: 10.1371/journal.pone.0124816. PubMed DOI PMC
Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov. 2007;6:464–479. doi: 10.1038/nrd2111. PubMed DOI
Fischer D, Mukrasch MD, Biernat J, et al. Conformational changes specific for pseudophosphorylation at Serine 262 selectively impair binding of tau to microtubules. Biochemistry (Mosc) 2009;48:10047–10055. doi: 10.1021/bi901090m. PubMed DOI
Ando K, Maruko-Otake A, Ohtake Y, et al. Stabilization of microtubule-unbound tau via tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Aβ42-induced tau toxicity. PLoS Genet. 2016;12:e1005917. doi: 10.1371/journal.pgen.1005917. PubMed DOI PMC
Wang J-W, Imai Y, Lu B. Activation of PAR-1 kinase and stimulation of tau phosphorylation by diverse signals require the tumor suppressor protein LKB1. J Neurosci. 2007;27:574. doi: 10.1523/JNEUROSCI.5094-06.2007. PubMed DOI PMC
Dequiedt F, Martin M, Von Blume J, et al. New role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases. Mol Cell Biol. 2006;26:7086–7102. doi: 10.1128/MCB.00231-06. PubMed DOI PMC
Müller J, Ritt DA, Copeland TD, Morrison DK. Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate. EMBO J. 2003;22:4431. doi: 10.1093/emboj/cdg426. PubMed DOI PMC
Müller J, Ory S, Copeland T, et al. C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell. 2001;8:983–993. doi: 10.1016/S1097-2765(01)00383-5. PubMed DOI
Zhang S-H, Kobayashi R, Graves PR, et al. Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3β protein. J Biol Chem. 1997;272:27281–27287. doi: 10.1074/jbc.272.43.27281. PubMed DOI
Mathias RA, Guise AJ, Cristea IM. Post-translational modifications regulate class IIa histone deacetylase (HDAC) function in health and disease. Mol Cell Proteom MCP. 2015;14:456–470. doi: 10.1074/mcp.O114.046565. PubMed DOI PMC
Platholi J, Federman A, Detert JA, et al. Regulation of protein phosphatase 1I by Cdc25C-associated kinase 1 (C-TAK1) and PFTAIRE protein kinase. J Biol Chem. 2014;289:23893–23900. doi: 10.1074/jbc.M114.557744. PubMed DOI PMC
Gong C-X, Singh TJ, Grundke-Iqbal I, Iqbal K. Phosphoprotein phosphatase activities in Alzheimer disease brain. J Neurochem. 1993;61:921–927. doi: 10.1111/j.1471-4159.1993.tb03603.x. PubMed DOI
Sontag J-M, Sontag E. Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci. 2014;7:16. doi: 10.3389/fnmol.2014.00016. PubMed DOI PMC
Schaar BT, Kinoshita K, McConnell SK. Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron. 2004;41:203–213. doi: 10.1016/S0896-6273(03)00843-2. PubMed DOI
Gu GJ, Wu D, Lund H, et al. Elevated MARK2-dependent phosphorylation of Tau in Alzheimer’s disease. J Alzheimers Dis JAD. 2013;33:699–713. PubMed
Beghini A, Magnani I, Roversi G, et al. The neural progenitor-restricted isoform of the MARK4 gene in 19q13.2 is upregulated in human gliomas and overexpressed in a subset of glioblastoma cell lines. Oncogene. 2003;22:2581–2591. doi: 10.1038/sj.onc.1206336. PubMed DOI
Hubaux R, Thu KL, Vucic EA, et al. Microtubule affinity-regulating kinase 2 is associated with DNA damage response and cisplatin resistance in non-small cell lung cancer. Int J Cancer. 2015;137:2072–2082. doi: 10.1002/ijc.29577. PubMed DOI PMC
Marshall EA, Ng KW, Anderson C, et al. Gene expression analysis of microtubule affinity-regulating kinase 2 in non-small cell lung cancer. Genom Data. 2015;6:145–148. doi: 10.1016/j.gdata.2015.08.011. PubMed DOI PMC
Wu Z-Z, Lu H-P, Chao CC-K. Identification and functional analysis of genes which confer resistance to cisplatin in tumor cells. Biochem Pharmacol. 2010;80:262–276. doi: 10.1016/j.bcp.2010.03.029. PubMed DOI
Pardo OE, Castellano L, Munro CE, et al. miR-515-5p controls cancer cell migration through MARK4 regulation. EMBO Rep. 2016;17:570. doi: 10.15252/embr.201540970. PubMed DOI PMC
Arash EH, Shiban A, Song S, Attisano L. MARK4 inhibits Hippo signaling to promote proliferation and migration of breast cancer cells. EMBO Rep. 2017 PubMed PMC
Hurov JB, Watkins JL, Piwnica-Worms H. Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol. 2004;14:736–741. doi: 10.1016/j.cub.2004.04.007. PubMed DOI
Lennerz JK, Hurov JB, White LS, et al. Loss of Par-1a/MARK3/C-TAK1 kinase leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis. Mol Cell Biol. 2010;30:5043–5056. doi: 10.1128/MCB.01472-09. PubMed DOI PMC
Liu Z, Gan L, Chen Y, et al. Mark4 promotes oxidative stress and inflammation via binding to PPARγ and activating NF-κB pathway in mice adipocytes. Sci Rep. 2016;6:21382. doi: 10.1038/srep21382. PubMed DOI PMC
Chin JY, Knowles RB, Schneider A, et al. Microtubule-affinity regulating kinase (MARK) is tightly associated with neurofibrillary tangles in Alzheimer brain: a fluorescence resonance energy transfer study. J Neuropathol Amp Exp Neurol. 2000;59:966. doi: 10.1093/jnen/59.11.966. PubMed DOI
Mocanu M-M, Nissen A, Eckermann K, et al. The potential for β-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous tau in inducible mouse models of tauopathy. J Neurosci. 2008;28:737. doi: 10.1523/JNEUROSCI.2824-07.2008. PubMed DOI PMC
Murray MM, Bui T, Smith M, et al. Staurosporine is chemoprotective by inducing G(1) arrest in a Chk1- and pRb-dependent manner. Carcinogenesis. 2013;34:2244–2252. doi: 10.1093/carcin/bgt186. PubMed DOI PMC
Lee BD, Shin J-H, VanKampen J, et al. Inhibitors of leucine rich repeat kinase 2 (LRRK2) protect against LRRK2-models of Parkinson’s disease. Nat Med. 2010;16:998–1000. doi: 10.1038/nm.2199. PubMed DOI PMC
Wakita S, Izumi Y, Nakai T, et al. Staurosporine induces dopaminergic neurite outgrowth through AMP-activated protein kinase/mammalian target of rapamycin signaling pathway. Neuropharmacology. 2014;77:39–48. doi: 10.1016/j.neuropharm.2013.09.012. PubMed DOI
Nabeshima T, Ogawa S, Nishimura H, et al. Staurosporine facilitates recovery from the basal forebrain-lesion-induced impairment of learning and deficit of cholinergic neuron in rats. J Pharmacol Exp Ther. 1991;257:562. PubMed
Mainardes R, Gremiao M. Reversed phase HPLC determination of zidovudine in rat plasma and its pharmacokinetics after a single intranasal dose administration. Biol Res. 2009;42:357–364. doi: 10.4067/S0716-97602009000300010. PubMed DOI
Fuse E, Tanii H, Kurata N, et al. Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human α1-acid glycoprotein. Cancer Res. 1998;58:3248. PubMed
Akinaga S, Gomi K, Morimoto M, et al. Antitumor activity of UCN-01, a selective inhibitor of protein kinase C, in murine and human tumor models. Cancer Res. 1991;51:4888. PubMed
Gurley L, Umbarger K, Kim J, et al. Development of a high-performance liquid chromatographic method for the analysis of staurosporine. J Chromatogr B Biomed Sci Appl. 1995;670:125–138. doi: 10.1016/0378-4347(95)00140-E. PubMed DOI
Monnerat C, Henriksson R, Le Chevalier T, et al. Phase I study of PKC412 (N-benzoyl-staurosporine), a novel oral protein kinase C inhibitor, combined with gemcitabine and cisplatin in patients with non-small-cell lung cancer. Ann Oncol. 2004;15:316–323. doi: 10.1093/annonc/mdh052. PubMed DOI
Sausville EA, Arbuck SG, Messmann R, et al. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol. 2001;19:2319–2333. doi: 10.1200/JCO.2001.19.8.2319. PubMed DOI
Mukthavaram R, Jiang P, Saklecha R, et al. High-efficiency liposomal encapsulation of a tyrosine kinase inhibitor leads to improved in vivo toxicity and tumor response profile. Int J Nanomed. 2013;8:3991–4006. PubMed PMC
Bain J, Plater L, Elliott M, et al. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408:297–315. doi: 10.1042/BJ20070797. PubMed DOI PMC
Pakavathkumar P, Sharma G, Kaushal V, et al. Methylene blue inhibits caspases by oxidation of the catalytic cysteine. Sci Rep. 2015;5:13730. doi: 10.1038/srep13730. PubMed DOI PMC
Wainwright M, Crossley KB. Methylene blue—a therapeutic dye for all seasons? J Chemother. 2002;14:431–443. doi: 10.1179/joc.2002.14.5.431. PubMed DOI
Rodriguez P, Zhou W, Barrett DW, et al. Multimodal randomized functional MR imaging of the effects of methylene blue in the human brain. Radiology. 2016;281:516–526. doi: 10.1148/radiol.2016152893. PubMed DOI PMC
Walter-Sack I, Rengelshausen J, Oberwittler H, et al. High absolute bioavailability of methylene blue given as an aqueous oral formulation. Eur J Clin Pharmacol. 2009;65:179–189. doi: 10.1007/s00228-008-0563-x. PubMed DOI
Schirmer RH, Adler H, Pickhardt M, Mandelkow E. “Lest we forget you—methylene blue…”. Neurobiol Aging. 2011;32:2325.e7–2325.e16. doi: 10.1016/j.neurobiolaging.2010.12.012. PubMed DOI
Sun W, Lee S, Huang X, et al. Attenuation of synaptic toxicity and MARK4/PAR1-mediated Tau phosphorylation by methylene blue for Alzheimer’s disease treatment. Sci Rep. 2016;6:34784. doi: 10.1038/srep34784. PubMed DOI PMC
Congdon EE, Wu JW, Myeku N, et al. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy. 2012;8:609–622. doi: 10.4161/auto.19048. PubMed DOI PMC
Meijer L, Thunnissen A-M, White A, et al. Inhibition of cyclin-dependent kinases, GSK-3β and CK1 by hymenialdisine, a marine sponge constituent. Chem Biol. 2000;7:51–63. doi: 10.1016/S1074-5521(00)00063-6. PubMed DOI
Timm T, von Kries JP, Li X, et al. Microtubule affinity regulating kinase activity in living neurons was examined by a genetically encoded fluorescence resonance energy transfer/fluorescence lifetime imaging-based biosensor: inhibitors with therapeutic potential. J Biol Chem. 2011;286:41711–41722. doi: 10.1074/jbc.M111.257865. PubMed DOI PMC
Wan Y, Hur W, Cho CY, et al. Synthesis and target identification of hymenialdisine analogs. Chem Biol. 2004;11:247–259. doi: 10.1016/j.chembiol.2004.01.015. PubMed DOI
Eldar-Finkelman H, Martinez A. GSK-3 inhibitors: preclinical and clinical focus on CNS. Front Mol Neurosci. 2011;4:32. doi: 10.3389/fnmol.2011.00032. PubMed DOI PMC
Saadat I, Higashi H, Obuse C, et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 2007;447:330–333. doi: 10.1038/nature05765. PubMed DOI
Mishra JP, Cohen D, Zamperone A, et al. CagA of Helicobacter pylori interacts with and inhibits the serine-threonine kinase PRK2. Cell Microbiol. 2015;17:1670–1682. doi: 10.1111/cmi.12464. PubMed DOI PMC
Neišić D, Miller MC, Quinkert ZT, et al. Helicobacter pylori CagA inhibits PAR1/MARK family kinases by mimicking host substrates. Nat Struct Mol Biol. 2010;17:130–132. doi: 10.1038/nsmb.1705. PubMed DOI PMC
Tronel C, Page G, Bodard S, et al. The specific PKR inhibitor C16 prevents apoptosis and IL-1β production in an acute excitotoxic rat model with a neuroinflammatory component. Neurochem Int. 2014;64:73–83. doi: 10.1016/j.neuint.2013.10.012. PubMed DOI
Ingrand S, Barrier L, Lafay-Chebassier C, et al. The oxindole/imidazole derivative C16 reduces in vivo brain PKR activation. FEBS Lett. 2007;581:4473–4478. doi: 10.1016/j.febslet.2007.08.022. PubMed DOI
Couturier J, Morel M, Pontcharraud R, et al. Interaction of double-stranded RNA-dependent protein kinase (PKR) with the death receptor signaling pathway in amyloid β (Aβ)-treated cells and in APP(SL)PS1 knock-in mice. J Biol Chem. 2010;285:1272–1282. doi: 10.1074/jbc.M109.041954. PubMed DOI PMC
Naz F, Shahbaaz M, Khan S, et al. PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4. J Mol Graph Model. 2015;62:245–252. doi: 10.1016/j.jmgm.2015.10.009. PubMed DOI
Naz F, Shahbaaz M, Bisetty K, et al. Designing new kinase inhibitor derivatives as therapeutics against common complex diseases: structural basis of microtubule affinity-regulating kinase 4 (MARK4) inhibition. OMICS J Integr Biol. 2015;19:700–711. doi: 10.1089/omi.2015.0111. PubMed DOI
Naz F, Sami N, Naqvi AT, et al. Evaluation of human microtubule affinity-regulating kinase 4 inhibitors: fluorescence binding studies, enzyme, and cell assays. J Biomol Struct Dyn. 2016 PubMed
Feldman RI, Wu JM, Polokoff MA, et al. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J Biol Chem. 2005;280:19867–19874. doi: 10.1074/jbc.M501367200. PubMed DOI
Clark K, Plater L, Peggie M, Cohen P. Use of the pharmacological inhibitor bx795 to study the regulation and physiological roles of TBK1 and IκB kinase ϵ: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. J Biol Chem. 2009;284:14136–14146. doi: 10.1074/jbc.M109.000414. PubMed DOI PMC
Chung S, Suzuki H, Miyamoto T, et al. Development of an orally-administrative MELK-targeting inhibitor that suppresses the growth of various types of human cancer. Oncotarget. 2012;3:1629–1640. doi: 10.18632/oncotarget.790. PubMed DOI PMC
Fraser C, Dawson JC, Dowling R, et al. Rapid discovery and structure-activity relationships of pyrazolopyrimidines that potently suppress breast cancer cell growth via SRC kinase inhibition with exceptional selectivity over ABL kinase. J Med Chem. 2016;59:4697–4710. doi: 10.1021/acs.jmedchem.6b00065. PubMed DOI PMC
Tandon M, Johnson J, Li Z, et al. New pyrazolopyrimidine inhibitors of protein kinase D as potent anticancer agents for prostate cancer cells. PLoS One. 2013;8:e75601. doi: 10.1371/journal.pone.0075601. PubMed DOI PMC
Sloman DL, Noucti N, Altman MD, et al. Optimization of microtubule affinity regulating kinase (MARK) inhibitors with improved physical properties. Bioorg Med Chem Lett. 2016;26:4362–4366. doi: 10.1016/j.bmcl.2016.02.003. PubMed DOI
Sack JS, Gao M, Kiefer SE, et al. Crystal structure of microtubule affinity-regulating kinase 4 catalytic domain in complex with a pyrazolopyrimidine inhibitor. Acta Crystallogr Sect F. 2016;72:129–134. doi: 10.1107/S2053230X15024747. PubMed DOI PMC
Gan R-Y, Li H-B. Recent progress on liver kinase B1 (LKB1): expression, regulation, downstream signaling and cancer suppressive function. Int J Mol Sci. 2014;15:16698–16718. doi: 10.3390/ijms150916698. PubMed DOI PMC
Timm T, Marx A, Panneerselvam S, et al. Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. BMC Neurosci. 2008;9:S9. doi: 10.1186/1471-2202-9-S2-S9. PubMed DOI PMC
Kodamullil AT, Younesi E, Naz M, et al. Computable cause-and-effect models of healthy and Alzheimer’s disease states and their mechanistic differential analysis. Alzheimers Dement J Alzheimers Assoc. 2015;11:1329–1339. doi: 10.1016/j.jalz.2015.02.006. PubMed DOI
Ozcan C, Battaglia E, Young R, Suzuki G. LKB1 knockout mouse develops spontaneous atrial fibrillation and provides mechanistic insights into human disease process. J Am Heart Assoc. 2015 PubMed PMC
Shan T, Xiong Y, Kuang S. Deletion of Lkb1 in adult mice results in body weight reduction and lethality. Sci Rep. 2016;6:36561. doi: 10.1038/srep36561. PubMed DOI PMC
Marx A, Nugoor C, Panneerselvam S, Mandelkow E. Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. FASEB J. 2010;24:1637–1648. doi: 10.1096/fj.09-148064. PubMed DOI
Matenia D, Griesshaber B, Li X, et al. PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Mol Biol Cell. 2005;16:4410–4422. doi: 10.1091/mbc.E05-01-0081. PubMed DOI PMC
Benton R, Palacios IM, Johnston DS. Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev Cell. 2002;3:659–671. doi: 10.1016/S1534-5807(02)00320-9. PubMed DOI
Naz F, Islam A, Ahmad F, Hassan MI. Atypical PKC phosphorylates microtubule affinity-regulating kinase 4 in vitro. Mol Cell Biochem. 2015;410:223–228. doi: 10.1007/s11010-015-2555-3. PubMed DOI
Watkins JL, Lewandowski KT, Meek SEM, et al. Phosphorylation of the Par-1 polarity kinase by protein kinase D regulates 14-3-3 binding and membrane association. Proc Natl Acad Sci. 2008;105:18378–18383. doi: 10.1073/pnas.0809661105. PubMed DOI PMC
Timm T, Balusamy K, Li X, et al. Glycogen synthase kinase (GSK) 3β directly phosphorylates serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. J Biol Chem. 2008;283:18873–18882. doi: 10.1074/jbc.M706596200. PubMed DOI
Kosuga S, Tashiro E, Kajioka T, et al. GSK-3beta directly phosphorylates and activates MARK2/PAR-1. J Biol Chem. 2005 PubMed
Kumar A, Singh A, Ekavali A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67:195–203. doi: 10.1016/j.pharep.2014.09.004. PubMed DOI