Excellent Diagnostic Characteristics for Ultrafast Gene Profiling of DEFA1-IL1B-LTF in Detection of Prosthetic Joint Infections

. 2017 Sep ; 55 (9) : 2686-2697. [epub] 20170621

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28637910

The timely and exact diagnosis of prosthetic joint infection (PJI) is crucial for surgical decision-making. Intraoperatively, delivery of the result within an hour is required. Alpha-defensin lateral immunoassay of joint fluid (JF) is precise for the intraoperative exclusion of PJI; however, for patients with a limited amount of JF and/or in cases where the JF is bloody, this test is unhelpful. Important information is hidden in periprosthetic tissues that may much better reflect the current status of implant pathology. We therefore investigated the utility of the gene expression patterns of 12 candidate genes (TLR1, -2, -4, -6, and 10, DEFA1, LTF, IL1B, BPI, CRP, IFNG, and DEFB4A) previously associated with infection for detection of PJI in periprosthetic tissues of patients with total joint arthroplasty (TJA) (n = 76) reoperated for PJI (n = 38) or aseptic failure (n = 38), using the ultrafast quantitative reverse transcription-PCR (RT-PCR) Xxpress system (BJS Biotechnologies Ltd.). Advanced data-mining algorithms were applied for data analysis. For PJI, we detected elevated mRNA expression levels of DEFA1 (P < 0.0001), IL1B (P < 0.0001), LTF (P < 0.0001), TLR1 (P = 0.02), and BPI (P = 0.01) in comparison to those in tissues from aseptic cases. A feature selection algorithm revealed that the DEFA1-IL1B-LTF pattern was the most appropriate for detection/exclusion of PJI, achieving 94.5% sensitivity and 95.7% specificity, with likelihood ratios (LRs) for positive and negative results of 16.3 and 0.06, respectively. Taken together, the results show that DEFA1-IL1B-LTF gene expression detection by use of ultrafast qRT-PCR linked to an electronic calculator allows detection of patients with a high probability of PJI within 45 min after sampling. Further testing on a larger cohort of patients is needed.

Zobrazit více v PubMed

Frank RM, Cross MB, Della Valle CJ. 2015. Periprosthetic joint infection: modern aspects of prevention, diagnosis, and treatment. J Knee Surg 28:105–112. doi:10.1055/s-0034-1396015. PubMed DOI

Alijanipour P, Bakhshi H, Parvizi J. 2013. Diagnosis of periprosthetic joint infection: the threshold for serological markers. Clin Orthop Relat Res 471:3186. doi:10.1007/s11999-013-3070-z. PubMed DOI PMC

Morrison TA, Figgie M, Miller AO, Goodman SM. 2013. Periprosthetic joint infection in patients with inflammatory joint disease: a review of risk factors and current approaches to diagnosis and management. HSS J 9:183–194. doi:10.1007/s11420-013-9338-8. PubMed DOI PMC

Matsen Ko L, Parvizi J. 2016. Diagnosis of periprosthetic infection: novel developments. Orthop Clin North Am 47:1–9. doi:10.1016/j.ocl.2015.08.003. PubMed DOI

Suda AJ, Tinelli M, Beisemann ND, Weil Y, Khoury A, Bischel OE. 2017. Diagnosis of periprosthetic joint infection using alpha-defensin test or multiplex-PCR: ideal diagnostic test still not found. Int Orthop doi:10.1007/s00264-017-3412-7. PubMed DOI

Sigmund IK, Holinka J, Gamper J, Staats K, Böhler C, Kubista B, Windhager R. 2017. Qualitative α-defensin test (Synovasure) for the diagnosis of periprosthetic infection in revision total joint arthroplasty. Bone Joint J 99–B:66–72. doi:10.1302/0301-620X.99B1.BJJ-2016-0295.R1. PubMed DOI

Kasparek MF, Kasparek M, Boettner F, Faschingbauer M, Hahne J, Dominkus M. 2016. Intraoperative diagnosis of periprosthetic joint infection using a novel alpha-defensin lateral flow assay. J Arthroplasty 31:2871–2874. doi:10.1016/j.arth.2016.05.033. PubMed DOI

Bonanzinga T, Zahar A, Dütsch M, Lausmann C, Kendoff D, Gehrke T. 2017. How reliable is the alpha-defensin immunoassay test for diagnosing periprosthetic joint infection? A prospective study. Clin Orthop Relat Res 475:408–415. doi:10.1007/s11999-016-4906-0. PubMed DOI PMC

Parvizi J, Zmistowski B, Berbari EF, Bauer TW, Springer BD, Della Valle CJ, Garvin KL, Mont MA, Wongworawat MD, Zalavras CG. 2011. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res 469:2992–2994. doi.10.1007/s11999-011-2102-9. doi:10.1007/s11999-011-2102-9. PubMed DOI PMC

Wu C, Qu X, Mao Y, Li H, Dai K, Liu F, Zhuet Z. 2014. Utility of intraoperative frozen section in the diagnosis of periprosthetic joint infection. PLoS One 9:e102346. doi:10.1371/journal.pone.0102346. PubMed DOI PMC

Cipriano C, Maiti A, Hale G, Jiranek W. 2014. The host response: Toll-like receptor expression in periprosthetic tissues as a biomarker for deep joint infection. J Bone Joint Surg Am 96:1692–1698. doi:10.2106/JBJS.M.01295. PubMed DOI

Deirmengian C, Hallab N, Tarabishy A, Della Valle C, Jacobs JJ, Lonner J, Booth RE Jr. 2010. Synovial fluid biomarkers for periprosthetic infection. Clin Orthop Relat Res 468:2017–2023. doi:10.1007/s11999-010-1298-4. PubMed DOI PMC

Galliera E, Drago L, Vassena C, Romanò C, Gioia Marazzi M, Salcito L, Corsi Romanelli MM. 2014. Toll-like receptor 2 in serum: a potential diagnostic marker of prosthetic joint infection? J Clin Microbiol 52:620–623. doi:10.1128/JCM.02727-13. PubMed DOI PMC

El-Helou O, Berbari EF, Brown RA, Gralewski JH, Osmon DR, Razonable RR. 2011. Functional assessment of Toll-like receptor 2 and its relevance in patients with Staphylococcus aureus infection of joint prosthesis. Hum Immunol 72:47–53. doi:10.1016/j.humimm.2010.10.001. PubMed DOI

Garvin KL, Konigsberg BS. 2012. Infection following total knee arthroplasty: prevention and management. Instr Course Lect 61:411–419. PubMed

Parvizi J, Adeli B, Zmistowski B, Restrepo C, Greenwald AS. 2012. Management of periprosthetic joint infection: the current knowledge: AAOS exhibit selection. J Bone Joint Surg Am 94:e104. doi:10.2106/JBJS.K.01417. PubMed DOI

Liu B, Cui Q, Jiang T, Ma S. 2004. A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics 5:136. doi:10.1186/1471-2105-5-136. PubMed DOI PMC

Moteghaed NY, Maghooli K, Pirhadi S, Garshasbi M. 2015. Biomarker discovery based on hybrid optimization algorithm and artificial neural networks on microarray data for cancer classification. J Med Signals Sens 5:88–96. PubMed PMC

Mehridehnavi A, Ziaei L. 2013. Minimal gene selection for classification and diagnosis prediction based on gene expression profile. Adv Biomed Res 2:26. doi:10.4103/2277-9175.107999. PubMed DOI PMC

Chen YC, Chang YC, Ke WC, Chiu HW. 2015. Cancer adjuvant chemotherapy strategic classification by artificial neural network with gene expression data: an example for non-small cell lung cancer. J Biomed Inform 56:1–7. doi:10.1016/j.jbi.2015.05.006. PubMed DOI

Bingham J, Clarke H, Spangehl M, Schwartz A, Beauchamp C, Goldberg B. 2014. The alpha defensin-1 biomarker assay can be used to evaluate the potentially infected total joint arthroplasty. Clin Orthop Relat Res 472:4006–4009. doi:10.1007/s11999-014-3900-7. PubMed DOI PMC

Shahi A, Parvizi J, Kazarian GS, Higuera C, Frangiamore S, Bingham J, Beauchamp C, Valle CD, Deirmengian C. 2016. The alpha-defensin test for periprosthetic joint infections is not affected by prior antibiotic administration. Clin Orthop Relat Res 474:1610–1615. doi:10.1007/s11999-016-4726-2. PubMed DOI PMC

Deirmengian C, Kardos K, Kilmartin P, Gulati S, Citrano P, Booth RE Jr. 2015. The alpha-defensin test for periprosthetic joint infection responds to a wide spectrum of organisms. Clin Orthop Relat Res 473:2229–2235. doi:10.1007/s11999-015-4152-x. PubMed DOI PMC

LaRock CN, Nizet V. 2015. Inflammasome/IL-1β responses to streptococcal pathogens. Front Immunol 6:518. doi:10.3389/fimmu.2015.00518. PubMed DOI PMC

Diamond G, Beckloff N, Weinberg A, Kisich KO. 2009. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392. doi:10.2174/138161209788682325. PubMed DOI PMC

Deirmengian C, Kardos K, Kilmartin P, Cameron A, Schiller K, Parvizi J. 2014. Diagnosing periprosthetic joint infection: has the era of the biomarker arrived? Clin Orthop Relat Res 472:3254–3262. doi:10.1007/s11999-014-3543-8. PubMed DOI PMC

Berbari E, Mabry T, Tsaras G, Spangehl M, Erwin PJ, Murad MH, Steckelberg J, Osmon D. 2010. Inflammatory blood laboratory levels as markers of prosthetic joint infection: a systematic review and meta-analysis. J Bone Joint Surg Am 92:2102–2109. doi:10.2106/JBJS.I.01199. PubMed DOI

Drescher B, Bai F. 2013. Neutrophil in viral infections, friend or foe? Virus Res 171:1–7. doi:10.1016/j.virusres.2012.11.002. PubMed DOI PMC

Takeda K, Kaisho T, Akira S. 2003. Toll-like receptors. Annu Rev Immunol 21:335–376. doi:10.1146/annurev.immunol.21.120601.141126. PubMed DOI

Tománková T, Kriegová E, Fillerová R, Lužná P, Ehrmann J, Gallo J. 2015. Low expression of TLR-1, -2, -4, IL-2, -2R, -10, -10R and TGFB1 in pseudosynovial tissue collected at revision total knee arthroplasty for aseptic loosening. Acta Chir Orthop Traumatol Cech 82:67–75. PubMed

Gallo J, Kolar M, Dendis M, Loveckova Y, Sauer P, Zapletalova J, Koukalova D. 2008. Culture and PCR analysis of joint fluid in the diagnosis of prosthetic joint infection. New Microbiol 31:97–104. PubMed

Mirra JM, Marder RA, Amstutz HC. 1982. The pathology of failed total joint arthroplasty. Clin Orthop Relat Res 1982:175–183. PubMed

Krenn V, Morawietz L, Perino G, Kienapfel H, Ascherl R, Hassenpflug GJ, Thomsen M, Thomas P, Huber M, Kendoff D, Baumhoer D, Krukemeyer MG, Natu S, Boettner F, Zustin J, Kölbel B, Rüther W, Kretzer JP, Tiemann A, Trampuz A, Frommelt L, Tichilow R, Söder S, Müller S, Parvizi J, Illgner U, Gehrke T. 2014. Revised histopathological consensus classification of joint implant related pathology. Pathol Res Pract 210:779–786. doi:10.1016/j.prp.2014.09.017. PubMed DOI

Parvizi J, Gehrke T. 2014. Definition of periprosthetic joint infection. International Consensus Group on Periprosthetic Joint Infection. J Arthroplasty 29:1331. doi:10.1016/j.arth.2014.03.009. PubMed DOI

Tomankova T, Kriegova E, Fillerova R, Luzna P, Ehrmann J, Gallo J. 2014. Comparison of periprosthetic tissues in knee and hip joints: differential expression of CCL3 and DC-STAMP in total knee and hip arthroplasty and similar cytokine profiles in primary knee and hip osteoarthritis. Osteoarthritis Cartilage 22:1851–1860. doi:10.1016/j.joca.2014.08.004. PubMed DOI

Boyle DL, Rosengren S, Bugbee W, Kavanaugh A, Firestein GS. 2003. Quantitative biomarker analysis of synovial gene expression by real-time PCR. Arthritis Res Ther 5:352–360. doi:10.1186/ar1004. PubMed DOI PMC

Macskassy SA, Provost F, Littman ML. 2003. Confidence bands for ROC curves: methods and an empirical study, abstr 1282995 Abstr First Workshop ROC Anal AI, ECAI-2004, Spain https://ssrn.com/abstract=1282995.

Demuth HB, Beale MH, De Jess O, Hagan MT. 2014. Neural network design, 2nd ed Martin Hagan, Stillwater, OK.

Zehnalova S, Kudelka M, Platos J, Horak Z. 2014. Local representatives in weighted networks, p 870–875. In Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining IEEE, Beijing, China. doi:10.1109/ASONAM.2014.6921688. DOI

Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14:1137–1145.

Trampuz A, Zimmerli W. 2005. Prosthetic joint infections: update in diagnosis and treatment. Swiss Med Wkly 135:243–251. PubMed

Schmalzried TP, Amstutz HC, Au MK, Dorey FJ. 1992. Etiology of deep sepsis in total hip arthroplasty. The significance of hematogenous and recurrent infections. Clin Orthop Relat Res 1992:200–207. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...