Bayesian techniques for analyzing group differences in the Iowa Gambling Task: A case study of intuitive and deliberate decision-makers
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., přehledy
PubMed
28685273
PubMed Central
PMC5990582
DOI
10.3758/s13423-017-1331-7
PII: 10.3758/s13423-017-1331-7
Knihovny.cz E-zdroje
- Klíčová slova
- Bayes factors, Cognitive modeling, Latent-mixture modeling, Product space method, Reinforcement learning models,
- MeSH
- Bayesova věta * MeSH
- exekutivní funkce fyziologie MeSH
- interpretace statistických dat * MeSH
- lidé MeSH
- neuropsychologické testy * MeSH
- posilování (psychologie) * MeSH
- psychologické modely * MeSH
- rozhodování fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.
Center for Adaptive Rationality Max Planck Institute for Human Development Berlin Germany
Department of Psychology University of Amsterdam PO Box 15906 1001 NK Amsterdam The Netherlands
Zobrazit více v PubMed
Ahn W-Y, Busemeyer JR, Wagenmakers E-J, Stout JC. Comparison of decision learning models using the generalization criterion method. Cognitive Science. 2008;32:1376–1402. doi: 10.1080/03640210802352992. PubMed DOI
Ahn, W.-Y., Haines, N., & Zhang, L (2016). Revealing neuro-computational mechanisms of reinforcement learning and decision-making with the hBayesDM package. bioRxiv. PubMed PMC
Ahn W-Y, Krawitz A, Kim W, Busemeyer JR, Brown JW. A model-based fMRI analysis with hierarchical Bayesian parameter estimation. Journal of Neuroscience Psychology and Economics. 2011;4:95–110. doi: 10.1037/a0020684. PubMed DOI PMC
Ahn W-Y, Vasilev G, Lee SH, Busemeyer JR, Kruschke JK, Bechara A, et al. Decision-making in stimulant and opiate addicts in protracted abstinence: Evidence from computational modeling with pure users. Frontiers in Psychology. 2014;5:849. doi: 10.3389/fpsyg.2014.00849. PubMed DOI PMC
Andrews M, Baguley T. Prior approval: The growth of Bayesian methods in psychology. British Journal of Mathematical and Statistical Psychology. 2013;66:1–7. doi: 10.1111/bmsp.12004. PubMed DOI
Bark R, Dieckmann S, Bogerts B, Northoff G. Deficit in decision-making in catatonic schizophrenia: An exploratory study. Psychiatry Research. 2005;134:131–141. doi: 10.1016/j.psychres.2004.04.013. PubMed DOI
Bartlema A, Lee M, Wetzels R, Vanpaemel W. A Bayesian hierarchical mixture approach to individual differences: Case studies in selective attention and representation in category learning. Journal of Mathematical Psychology. 2014;59:132–150. doi: 10.1016/j.jmp.2013.12.002. DOI
Bayarri MJ, Benjamin DJ, Berger JO, Sellke TM. Rejection odds and rejection ratios: A proposal for statistical practice in testing hypotheses. Journal of Mathematical Psychology. 2016;72:90–103. doi: 10.1016/j.jmp.2015.12.007. PubMed DOI PMC
Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition. 1994;50:7–15. doi: 10.1016/0010-0277(94)90018-3. PubMed DOI
Bechara A, Damasio H, Damasio AR, Lee GP. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience. 1999;19:5473–5481. doi: 10.1523/JNEUROSCI.19-13-05473.1999. PubMed DOI PMC
Bechara A, Damasio H, Tranel D, Anderson SW. Dissociation of working memory from decision-making within the human prefrontal cortex. Journal of Neuroscience. 1998;18:428–437. doi: 10.1523/JNEUROSCI.18-01-00428.1998. PubMed DOI PMC
Bechara A, Damasio H, Tranel D, Damasio AR. Deciding advantageously before knowing the advantageous strategy. Science. 1997;275:1293–1295. doi: 10.1126/science.275.5304.1293. PubMed DOI
Bechara A, Tranel D, Damasio H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain. 2000;123:2189–2202. doi: 10.1093/brain/123.11.2189. PubMed DOI
Beitz KM, Salthouse TA, Hasker DP. Performance on the Iowa Gambling Task: From 5 to 89 years of age. Journal of Experimental Psychology: General. 2014;143:1677–1689. doi: 10.1037/a0035823. PubMed DOI PMC
Berger, J. O., & Delampady, M. (1987). Testing precise hypotheses. Statistical Science, 2, 317–335.
Berger JO, Molina G. Posterior model probabilities via path-based pairwise priors. Statistica Neerlandica. 2005;59:3–15. doi: 10.1111/j.1467-9574.2005.00275.x. DOI
Berger JO, Mortera J. Default Bayes factors for nonnested hypothesis testing. Journal of the American Statistical Association. 1999;94:542–554. doi: 10.1080/01621459.1999.10474149. DOI
Betsch C. Präferenz für Intuition und Deliberation. Zeitschrift für Differentielle und Diagnostische Psychologie. 2004;25:179–197. doi: 10.1024/0170-1789.25.4.179. DOI
Betsch C, Iannello P. Measuring individual differences in intuitive and deliberate decision making styles – A comparison of different measures. In: Glöckner A, Witteman C, editors. Tracing intuition: Recent methods in measuring intuitive and deliberate processes in decision making. London: Psychology Press; 2010. pp. 251–267.
Betsch, C., & Iannello, P. (in preparation). A unified scale to assess individual differences in intuition and deliberation (USID).
Betsch C, Kunz JJ. Individual strategy preferences and decisional fit. Journal of Behavioral Decision Making. 2008;21:532–555. doi: 10.1002/bdm.600. DOI
Blair RJR, Colledge E, Mitchell DGV. Somatic markers and response reversal: Is there orbitofrontal cortex dysfunction in boys with psychopathic tendencies? Journal of Abnormal Child Psychology. 2001;29:499–511. doi: 10.1023/A:1012277125119. PubMed DOI
Buelow MT, Suhr JA. Construct validity of the Iowa Gambling Task. Neuropsychology Review. 2009;19:102–114. doi: 10.1007/s11065-009-9083-4. PubMed DOI
Burns LR, D’Zurilla TJ. Individual differences in perceived information processing styles in stress and coping situations: Development and validation of the perceived modes of processing inventory. Cognitive Therapy and Research. 1999;23:345–371. doi: 10.1023/A:1018799700207. DOI
Busemeyer JR, Stout J, Finn P. Using computational models to help explain decision-making processes of substance abusers. In: Barch D, editor. Cognitive and affective neuroscience of psychopathology. New York: Oxford University Press; 2003.
Busemeyer JR, Stout JC. A contribution of cognitive decision models to clinical assessment: Decomposing performance on the Bechara gambling task. Psychological Assessment. 2002;14:253–262. doi: 10.1037/1040-3590.14.3.253. PubMed DOI
Busemeyer, J. R., Wang, Z., & Shiffrin, R. M. (in press). Bayesian model comparison favors quantum over standard decision theory account of dynamic inconsistency. Decision.
Carlin, B. P., & Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods. Journal of the Royal Statistical Society. Series B (Methodological), 3, 473–484.
Cavedini P, Riboldi G, D’Annucci A, Belotti P, Cisima M, Bellodi L. Decision-making heterogeneity in obsessive–compulsive disorder: Ventromedial prefrontal cortex function predicts different treatment outcomes. Neuropsychologia. 2002;40:205–211. doi: 10.1016/S0028-3932(01)00077-X. PubMed DOI
Cavedini P, Riboldi G, Keller R, D’annucci A, Bellodi L. Frontal lobe dysfunction in pathological gambling patients. Biological Psychiatry. 2002;51:334–341. doi: 10.1016/S0006-3223(01)01227-6. PubMed DOI
Cella M, Dymond S, Cooper A, Turnbull OH. Cognitive decision modelling of emotion-based learning impairment in schizophrenia: The role of awareness. Psychiatry Research. 2012;196:15–19. doi: 10.1016/j.psychres.2011.08.015. PubMed DOI
Cools, E., & van den Broeck, H. (2007). Development and validation of the cognitive style indicator. The Journal of Psychology, 141, 359–387. PubMed
Crone, E. A., Vendel, I., & van der Molen, M. W. (2003). Decision-making in disinhibited adolescents and adults: Insensitivity to future consequences or driven by immediate reward? Personality and Individual Differences, 35, 1625–1641.
Dai J, Kerestes R, Upton DJ, Busemeyer JR, Stout JC. An improved cognitive model of the Iowa and Soochow gambling tasks with regard to model fitting performance and tests of parameter consistency. Frontiers in Psychology. 2015;6:229. doi: 10.3389/fpsyg.2015.00229. PubMed DOI PMC
Damasio, A. R. (1994). Descartes’ error: Emotion reason and the human brain. New York: Avon.
Damasio, A. R., Tranel, D., & Damasio, H (1991). Somatic markers and the guidance of behavior: Theory and preliminary testing. In Levin, H, Eisenberg, H., & Benton, A. E. (Eds.), Frontal lobe function and dysfunction (pp. 217–229). New York: Oxford University Press.
Davis, C., Fox, J., Patte, K., Curtis, C., Strimas, R., Reid, C., et al. (2008). Education level moderates learning on two versions of the Iowa Gambling Task. Journal of the International Neuropsychological Society, 14, 1063–1068. PubMed
Demaree HA, Burns KJ, DeDonno MA. Intelligence, but not emotional intelligence, predicts Iowa Gambling Task performance. Intelligence. 2010;38:249–254. doi: 10.1016/j.intell.2009.12.004. DOI
Dunn BD, Dalgleish T, Lawrence AD. The somatic marker hypothesis: A critical evaluation. Neuroscience & Biobehavioral Reviews. 2006;30:239–271. doi: 10.1016/j.neubiorev.2005.07.001. PubMed DOI
Edwards W, Lindman H, Savage LJ. Bayesian statistical inference for psychological research. Psychological Review. 1963;70:193–242. doi: 10.1037/h0044139. DOI
Epstein S, Pacini R, Denes-Raj V, Heier H. Individual differences in intuitive–experiential and analytical–rational thinking styles. Journal of Personality and Social Psychology. 1996;71:390–405. doi: 10.1037/0022-3514.71.2.390. PubMed DOI
Escartin, G., Junqué, C., Juncadella, M., Gabarrós, A., de Miquel, M. A., & Rubio, F. (2012). Decision-making impairment on the Iowa Gambling Task after endovascular coiling or neurosurgical clipping for ruptured anterior communicating artery aneurysm. Neuropsychology, 26, 172–180. PubMed
Franken IH, Muris P. Individual differences in decision-making. Personality and Individual Differences. 2005;39:991–998. doi: 10.1016/j.paid.2005.04.004. DOI
Fridberg DJ, Queller S, Ahn W-Y, Kim W, Bishara AJ, Busemeyer JR, et al. Cognitive mechanisms underlying risky decision-making in chronic cannabis users. Journal of Mathematical Psychology. 2010;54:28–38. doi: 10.1016/j.jmp.2009.10.002. PubMed DOI PMC
Gelman A, Rubin D. Inference from iterative simulation using multiple sequences. Statistical Science. 1992;7:457–472. doi: 10.1214/ss/1177011136. DOI
Gigerenzer G, Hertwig R, Pachur T. Heuristics: The foundations of adaptive behavior. New York: Oxford University Press; 2011.
Green, P. J. (2003). Trans-dimensional Markov chain Monte Carlo. In Green, P. J., Hjort, N. L., & Richardson, S. (Eds.), Highly structured stochastic systems. Oxford University Press.
Hammersley JM, Handscomb DC. Monte Carlo methods. London: Methuen; 1964.
Harman JL. Individual differences in need for cognition and decision-making in the Iowa Gambling Task. Personality and Individual Differences. 2011;51:112–116. doi: 10.1016/j.paid.2011.03.021. DOI
Hoffman MD, Gelman A. The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research. 2014;15:1593–1623.
Horn SS, Pachur T, Mata R. How does aging affect recognition-based inference? A hierarchical Bayesian modeling approach. Acta Psychologica. 2015;154:77–85. doi: 10.1016/j.actpsy.2014.11.001. PubMed DOI
Janssen T, Larsen H, Peeters M, Boendermaker WJ, Vollebergh WA, Wiers RW. Do online assessed self-report and behavioral measures of impulsivity-related constructs predict onset of substance use in adolescents? Addictive Behaviors Reports. 2015;1:12–18. doi: 10.1016/j.abrep.2015.01.002. PubMed DOI PMC
JASP Team (2015). JASP (Version 0.7) [Computer software].
Jeffreys H. Theory of probability. 3rd edn. Oxford: Oxford University Press; 1961.
Johnson VE. Revised standards for statistical evidence. Proceedings of the National Academy of Sciences. 2013;110:19313–19317. doi: 10.1073/pnas.1313476110. PubMed DOI PMC
Kass RE, Raftery AE. Bayes factors. Journal of the American Statistical Association. 1995;90:773–795. doi: 10.1080/01621459.1995.10476572. DOI
Lee MD, Lodewyckx T, Wagenmakers E-J. Three Bayesian analyses of memory deficits in patients with dissociative identity disorder. In: Raaijmakers J R, Criss A, Goldstone R, Nosofsky R, Steyvers M, editors. Cognitive modeling in perception and memory: A Festschrift for Richard M. Shiffrin. Hove, UK: Psychology Press; 2015. pp. 189–200.
Lee MD, Wagenmakers E-J. Bayesian statistical inference in psychology: Comment on Trafimow (2003) Psychological Review. 2005;112:662–668. doi: 10.1037/0033-295X.112.3.662. PubMed DOI
Lee MD, Wagenmakers E-J. Bayesian modeling for cognitive science: A practical course. Cambridge: Cambridge University Press; 2013.
Lejarraga T, Pachur T, Frey R, Hertwig R. Decisions from experience: From monetary to medical gambles. Journal of Behavioral Decision Making. 2016;29:67–77. doi: 10.1002/bdm.1877. DOI
Lewis SM, Raftery AE. Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator. Journal of the American Statistical Association. 1997;92:648–655.
Lodewyckx T, Kim W, Lee MD, Tuerlinckx F, Kuppens P, Wagenmakers E-J. A tutorial on Bayes factor estimation with the product space method. Journal of Mathematical Psychology. 2011;55:331–347. doi: 10.1016/j.jmp.2011.06.001. PubMed DOI PMC
Luce RD. Individual choice behavior: A theoretical analysis. Wiley: New York; 1959.
Maia TV, McClelland JL. A reexamination of the evidence for the somatic marker hypothesis: What participants really know in the Iowa Gambling Task. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:16075–16080. doi: 10.1073/pnas.0406666101. PubMed DOI PMC
Martino DJ, Bucay D, Butman JT, Allegri RF. Neuropsychological frontal impairments and negative symptoms in schizophrenia. Psychiatry Research. 2007;152:121–128. doi: 10.1016/j.psychres.2006.03.002. PubMed DOI
Myung IJ, Pitt MA. Applying Occam’s razor in modeling cognition: A Bayesian approach. Psychonomic Bulletin & Review. 1997;4:79–95. doi: 10.3758/BF03210778. DOI
Navarro DJ, Griffiths TL, Steyvers M, Lee MD. Modeling individual differences using Dirichlet processes. Journal of Mathematical Psychology. 2006;50:101–122. doi: 10.1016/j.jmp.2005.11.006. DOI
Newell BR, Shanks DR. Unconscious influences on decision-making: A critical review. Behavioral and Brain Sciences. 2014;37:1–19. doi: 10.1017/S0140525X12003214. PubMed DOI
Pachur T, Olsson H. Type of learning task impacts performance and strategy selection in decision-making. Cognitive Psychology. 2012;65:207–240. doi: 10.1016/j.cogpsych.2012.03.003. PubMed DOI
Pachur T, Spaar M. Domain-specific preferences for intuition and deliberation in decision-making. Journal of Applied Research in Memory and Cognition. 2015;4:303–311. doi: 10.1016/j.jarmac.2015.07.006. DOI
Pacini R, Epstein S. The relation of rational and experiential information processing styles to personality, basic beliefs, and the ratio-bias phenomenon. Journal of Personality and Social Psychology. 1999;76:972–987. doi: 10.1037/0022-3514.76.6.972. PubMed DOI
Payne JW, Bettman JR, Johnson EJ. The adaptive decision maker. New York: Cambridge University Press; 1993.
Phillips WJ, Fletcher JM, Marks AD, Hine DW. Thinking styles and decision-making: A meta-analysis. Psychological Bulletin. 2016;142:260–290. doi: 10.1037/bul0000027. PubMed DOI
Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika. 1977;64:191–199. doi: 10.1093/biomet/64.2.191. DOI
R Core Team (2015). R: A language and environment for statistical computing. Vienna, Austria.
Reboussin DM, DeMets DL, Kim K, Lan KG. Computations for group sequential boundaries using the Lan-Demets spending function method. Controlled Clinical Trials. 2000;21:190–207. doi: 10.1016/S0197-2456(00)00057-X. PubMed DOI
Rouder JN. Optional stopping: No problem for Bayesians. Psychonomic Bulletin & Review. 2014;21:301–308. doi: 10.3758/s13423-014-0595-4. PubMed DOI
Rouder JN, Lu J. An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review. 2005;12:573–604. doi: 10.3758/BF03196750. PubMed DOI
Rouder JN, Lu J, Morey RD, Sun D, Speckman PL. A hierarchical process-dissociation model. Journal of Experimental Psychology: General. 2008;137:370–389. doi: 10.1037/0096-3445.137.2.370. PubMed DOI
Rouder JN, Lu J, Speckman P, Sun D, Jiang Y. A hierarchical model for estimating response time distributions. Psychonomic Bulletin & Review. 2005;12:195–223. doi: 10.3758/BF03257252. PubMed DOI
Rouder JN, Morey RD, Speckman PL, Province JM. Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology. 2012;56:356–374. doi: 10.1016/j.jmp.2012.08.001. DOI
Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review. 2009;16:225–237. doi: 10.3758/PBR.16.2.225. PubMed DOI
Scheibehenne B, Pachur T. Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice. Psychonomic Bulletin & Review. 2015;22:391–407. doi: 10.3758/s13423-014-0684-4. PubMed DOI
Schonberg T, Fox CR, Poldrack RA. Mind the gap: Bridging economic and naturalistic risk-taking with cognitive neuroscience. Trends in Cognitive Sciences. 2011;15:11–19. doi: 10.1016/j.tics.2010.10.002. PubMed DOI PMC
Schunk D, Betsch C. Explaining heterogeneity in utility functions by individual differences in decision modes. Journal of Economic Psychology. 2006;27:386–401. doi: 10.1016/j.joep.2005.08.003. DOI
Schwarz G. Estimating the dimension of a model. The Annals of Statistics. 1978;6:461–464. doi: 10.1214/aos/1176344136. DOI
Scott SG, Bruce RA. Decision-making style: The development and assessment of a new measure. Educational and Psychological Measurement. 1995;55:818–831. doi: 10.1177/0013164495055005017. DOI
Sellke T, Bayarri M, Berger JO. Calibration of p values for testing precise null hypotheses. The American Statistician. 2001;55:62–71. doi: 10.1198/000313001300339950. DOI
Sevy S, Burdick KE, Visweswaraiah H, Abdelmessih S, Lukin M, Yechiam E, et al. Iowa Gambling Task in schizophrenia: A review and new data in patients with schizophrenia and co-occurring cannabis use disorders. Schizophrenia Research. 2007;92:74–84. doi: 10.1016/j.schres.2007.01.005. PubMed DOI PMC
Shiffrin RM, Lee MD, Kim W, Wagenmakers E-J. A survey of model evaluation approaches with a tutorial on hierarchical Bayesian methods. Cognitive Science. 2008;32:1248–1284. doi: 10.1080/03640210802414826. PubMed DOI
Sisson SA. Transdimensional Markov chains: A decade of progress and future perspectives. Journal of the American Statistical Association. 2005;100:1077–1089. doi: 10.1198/016214505000000664. DOI
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 583–639.
Stan Development Team (2014a). RStan: The R interface to Stan, version 2.5.0. Retrieved from http://mc-stan.org/rstan.html
Stan Development Team (2014b). Stan: A C++ library for probability and sampling, version 2.5.0.
Stan Development Team (2014c). Stan modeling language users guide and reference manual, version 2.5.0.
Steingroever H, Davis H, Fridberg DJ, Horstmann A, Kjome KL, Kumari V, et al. Data from 617 healthy participants performing the Iowa Gambling Task: A “many labs” collaboration. Journal of Open Psychology Data. 2015;3:e5. doi: 10.5334/jopd.ak. DOI
Steingroever H, Wetzels R, Horstmann A, Neumann J, Wagenmakers E-J. Performance of healthy participants on the Iowa Gambling Task. Psychological Assessment. 2013;25:180–193. doi: 10.1037/a0029929. PubMed DOI
Steingroever, H., Wetzels, R., & Wagenmakers, E.-J. (2013a). A comparison of reinforcement-learning models for the Iowa Gambling Task using parameter space partitioning. The Journal of Problem Solving, 5, Article 2.
Steingroever H, Wetzels R, Wagenmakers E-J. Validating the PV,L-Delta model for the Iowa Gambling Task. Frontiers in Psychology. 2013;4:898. doi: 10.3389/fpsyg.2013.00898. PubMed DOI PMC
Steingroever H, Wetzels R, Wagenmakers E-J. Absolute performance of reinforcement-learning models for the Iowa Gambling Task. Decision. 2014;1:161–183. doi: 10.1037/dec0000005. DOI
Steingroever H, Wetzels R, Wagenmakers E-J. Bayes factors for reinforcement-learning models of the Iowa Gambling Task. Decision. 2016;3:115–131. doi: 10.1037/dec0000040. DOI
Suhr JA, Tsanadis J. Affect and personality correlates of the Iowa Gambling Task. Personality and Individual Differences. 2007;43:27–36. doi: 10.1016/j.paid.2006.11.004. DOI
Tomb I, Hauser M, Deldin P, Caramazza A. Do somatic markers mediate decisions on the gambling task? Nature Neuroscience. 2002;5:1103–1104. doi: 10.1038/nn1102-1103. PubMed DOI
Toplak M, Sorge G, Benoit A, West R, Stanovich K. Decision-making and cognitive abilities: A review of associations between Iowa Gambling Task performance, executive functions, and intelligence. Clinical Psychology Review. 2010;30:562–581. doi: 10.1016/j.cpr.2010.04.002. PubMed DOI
Turnbull OH, Evans CE, Bunce A, Carzolio B, O’Connor J. Emotion-based learning and central executive resources: An investigation of intuition and the Iowa Gambling Task. Brain and Cognition. 2005;57(3):244–247. doi: 10.1016/j.bandc.2004.08.053. PubMed DOI
Tversky A, Kahneman D. Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty. 1992;5:297–323. doi: 10.1007/BF00122574. DOI
Vandekerckhove J, Matzke D, Wagenmakers E-J. Model comparison and the principle of parsimony. In: Busemeyer J, Townsend J, Wang Z J, Eidels A, editors. Oxford handbook of computational and mathematical psychology. Oxford: Oxford University Press; 2015.
Wagenmakers E-J. A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review. 2007;14:779–804. doi: 10.3758/BF03194105. PubMed DOI
Wagenmakers E-J, Lee M, Lodewyckx T, Iverson GJ. Bayesian versus frequentist inference. In: Hoijtink H, Klugkist I, Boelen P A, editors. Bayesian evaluation of informative hypotheses. New York: Springer; 2008. pp. 181–207.
Wagenmakers E-J, Lodewyckx T, Kuriyal H, Grasman R. Bayesian hypothesis testing for psychologists: A tutorial on the Savage–Dickey method. Cognitive Psychology. 2010;60:158–189. doi: 10.1016/j.cogpsych.2009.12.001. PubMed DOI
Wetzels R, Matzke D, Lee MD, Rouder JN, Iverson GJ, Wagenmakers E-J. Statistical evidence in experimental psychology an empirical comparison using 855 t tests. Perspectives on Psychological Science. 2011;6:291–298. doi: 10.1177/1745691611406923. PubMed DOI
Wetzels R, Raaijmakers JG, Jakab E, Wagenmakers E-J. How to quantify support for and against the null hypothesis: A flexible WinB,UGS implementation of a default Bayesian t test. Psychonomic Bulletin & Review. 2009;16:752–760. doi: 10.3758/PBR.16.4.752. PubMed DOI
Wetzels R, Vandekerckhove J, Tuerlinckx F, Wagenmakers E-J. Bayesian parameter estimation in the Expectancy Valence model of the Iowa Gambling Task. Journal of Mathematical Psychology. 2010;54:14–27. doi: 10.1016/j.jmp.2008.12.001. DOI
Wood S, Busemeyer J, Koling A, Cox CR, Davis H. Older adults as adaptive decision-makers: Evidence from the Iowa Gambling Task. Psychology and Aging. 2005;20:220–225. doi: 10.1037/0882-7974.20.2.220. PubMed DOI
Worthy, D. A., Pang, B., & Byrne, K. A. (2013). Decomposing the roles of perseveration and expected value representation in models of the Iowa Gambling Task. Frontiers in Psychology, 4, 640. PubMed PMC
Yechiam E, Hayden EP, Bodkins M, O’Donnell BF, Hetrick WP. Decision making in bipolar disorder: A cognitive modeling approach. Psychiatry Research. 2008;161:142–152. doi: 10.1016/j.psychres.2007.07.001. PubMed DOI
Yechiam E, Kanz JE, Bechara A, Stout JC, Busemeyer JR, Altmaier EM, et al. Neurocognitive deficits related to poor decision-making in people behind bars. Psychonomic Bulletin & Review. 2008;15:44–51. doi: 10.3758/PBR.15.1.44. PubMed DOI PMC