Effect of increased left ventricle mass on ischemia assessment in electrocardiographic signals: rabbit isolated heart study
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28778146
PubMed Central
PMC5544990
DOI
10.1186/s12872-017-0652-9
PII: 10.1186/s12872-017-0652-9
Knihovny.cz E-zdroje
- Klíčová slova
- Electrogram, Increased left ventricular mass, Isolated heart, Myocardial ischemia detection, ROC analysis, Rabbit,
- MeSH
- elektrofyziologické techniky kardiologické * MeSH
- elektrokardiografie * MeSH
- funkce levé komory srdeční * MeSH
- hypertrofie levé komory srdeční komplikace diagnóza patofyziologie MeSH
- ischemická choroba srdeční komplikace diagnóza patofyziologie MeSH
- králíci MeSH
- modely nemocí na zvířatech MeSH
- plocha pod křivkou MeSH
- počítačové zpracování signálu MeSH
- prediktivní hodnota testů MeSH
- preparace izolovaného srdce MeSH
- remodelace komor * MeSH
- rizikové faktory MeSH
- ROC křivka MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Detailed quantitative analysis of the effect of left ventricle (LV) hypertrophy on myocardial ischemia manifestation in ECG is still missing. The associations between both phenomena can be studied in animal models. In this study, rabbit isolated hearts with spontaneously increased LV mass were used to evaluate the effect of such LV alteration on ischemia detection criteria and performance. METHODS: Electrophysiological effects of increased LV mass were evaluated on sixteen New Zealand rabbit isolated hearts under non-ischemic and ischemic conditions by analysis of various electrogram (EG) parameters. To reveal hearts with increased LV mass, LV weight/heart weight ratio was proposed. Standard paired and unpaired statistical tests and receiver operating characteristics analysis were used to compare data derived from different groups of animals, monitor EG parameters during global ischemia and evaluate their ability to discriminate between unchanged and increased LV as well as non-ischemic and ischemic state. RESULTS: Successful evaluation of both increased LV mass and ischemia is lead-dependent. Particularly, maximal deviation of QRS and area under QRS associated with anterolateral heart wall respond significantly to even early phase (the 1st-3rd min) of ischemia. Besides ischemia, these parameters reflect increased LV mass as well (with sensitivity reaching approx. 80%). However, the sensitivity of the parameters to both phenomena may lead to misinterpretations, when inappropriate criteria for ischemia detection are selected. Particularly, use of cut-off-based criteria defined from control group for ischemia detection in hearts with increased LV mass may result in dramatic reduction (approx. 15%) of detection specificity due to increased number of false positives. Nevertheless, criteria adjusted to particular experimental group allow achieving ischemia detection sensitivity of 89-100% and specificity of 94-100%, respectively. CONCLUSIONS: It was shown that response of the heart to myocardial ischemia can be successfully evaluated only when taking into account heart-related factors (such as LV mass) and other methodological aspects (such as recording electrodes position, selected EG parameters, cut-off criteria, etc.). Results of this study might be helpful for developing new clinical diagnostic strategies in order to improve myocardial ischemia detection in patients with LV hypertrophy.
Zobrazit více v PubMed
Hancock EW, Deal BJ, Mirvis DM, Okin P, Kligfield P, Gettes LS, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram. Part V: electrocardiogram changes associated with cardiac chamber hypertrophy. JACC. 2009;53:992–1002. doi: 10.1016/j.jacc.2008.12.015. PubMed DOI
Otterstad JE. Ischaemia and left ventricular hypertrophy. Eur Heart J. 1993;14:2–6. doi: 10.1093/eurheartj/14.suppl_F.2. PubMed DOI
Zehender M, Faber T, Koscheck U, Meinertz T, Just H. Ventricular tachyarrhythmias, myocardial ischemia, and sudden cardiac death in patients with hypertensive heart disease. Clin Cardiol. 1995;18:377–383. doi: 10.1002/clc.4960180705. PubMed DOI
Armstrong EJ, Kulkarni AR, Prashant DB, Hofmayer KS, MacGregor JS, Stein JC, Kinlay S, Ganz P, McCabe JM. Electrocardiographic criteria for ST-elevation myocardial infarction in patients with left ventricular hypertrophy. Am J Cardiol. 2012;110:977–983. doi: 10.1016/j.amjcard.2012.05.032. PubMed DOI
Olejnickova V, Novakova M, Provaznik I. Isolated heart models: cardiovascular system studies and technological advances. Med Biol Eng Comput. 2015;53:669–678. doi: 10.1007/s11517-015-1270-2. PubMed DOI
Boutros A, Wang J. Ischaemic preconditioning, adenosine and bethanechol protect spontaneously hypertensive isolated rat hearts. J Pharmacol Exp Ther. 1995;275:1148–1156. PubMed
Fantinelli JC, Pérez Núnez IA, González Arbeláez LF, Schinella GR, Mosca SM. Participation of mitochondrial permeability transition pore in the effects of ischemic preconditioning in hypertrophied hearts: role of NO and mitoK ATP. Int J Cardiol. 2013;166:173–180. doi: 10.1016/j.ijcard.2011.10.103. PubMed DOI
Kohya T, Kimura S, Meyrburq RJ, Bassett AL. Susceptibility of hypertrophied rat hearts to ventricular fibrillation during acute ischemia. J Mol Cell Cardiol. 1988;20:159–168. doi: 10.1016/S0022-2828(88)80029-4. PubMed DOI
Kaese S, Frommeyer G, Verheule S, van Loon G, Gehrmann J, Breithardt G, et al. The ECG in cardiovascular-relevant animal models of electrophysiology. Herzschrittmachertherapie Elektrophysiol. 2013;2:84–91. doi: 10.1007/s00399-013-0260-z. PubMed DOI
Bers DM. Cardiac Na/Ca exchange function in rabbit, mouse and man: what’s the difference? J Mol Cell Cardiol. 2002;34:369–373. doi: 10.1006/jmcc.2002.1530. PubMed DOI
Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol. 2011;50:940–950. doi: 10.1016/j.yjmcc.2011.02.018. PubMed DOI
Kang C, Brennan JA, Kuzmiak-Glancy S, Garrott KE, Kay MW, Efimov IR. Technical advances in studying cardiac electrophysiology – role of rabbit models. Prog Biophys Mol Biol. 2016;121:97–109. doi: 10.1016/j.pbiomolbio.2016.05.006. PubMed DOI
Chitty J. Cardiovascular disease in rabbits. Companion Animal. 2015;20:74–78. doi: 10.12968/coan.2015.20.2.74. DOI
Weber HW, Van der Walt JJ. Cardiomyopathy in crowded rabbits: a preliminary report. S Afr Med J. 1973;47:1591–1595. PubMed
Hlaváčová M, Olejníčková V, Ronzhina M, Stračina T, Janoušek O, Nováková M, et al. Tolerance of isolated rabbit hearts to short ischemic periods is affected by increased LV mass fraction. In press Accepted by Physiol Res. PubMed
Kolářová J, Fialová K, Janoušek O, Nováková M, Provazník I. Experimental methods for simultaneous measurement of action potentials and electrograms in isolated heart. Physiol Res. 2010;59:S71–S80. PubMed
Kolářová J, Nováková M, Ronzhina M, Janoušek O, Veselý P, Olejníčková V, et al. Isolated rabbit hearts – databases of EGs and MAP signals. Comput Cardiol. 2013:551–4.
Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27:861–874. doi: 10.1016/j.patrec.2005.10.010. DOI
Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JAC. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. J Am Coll Cardiol Img. 2012;5:837–848. doi: 10.1016/j.jcmg.2012.06.003. PubMed DOI PMC
Foppa M, Duncan BB, Rohde LEP. Echocardiography-based left ventricular mass estimation. How should we define hypertrophy? Cardiovasc Ultrasound. 2005;3:17. PubMed PMC
Lorell BH, Carabello BA. Left ventricular hypertrophy. Pathogenesis, detection, and prognosis. Circulation. 2000;102:470–479. doi: 10.1161/01.CIR.102.4.470. PubMed DOI
McIntosh MA, Hicks MN, Kane KA, Rankin AC, Cobbe SM. A characterized model of left ventricular hypertrophy in the rabbit. Cardioscience. 1994;5:95–100. PubMed
Wolk R, Sneddon KP, Dempster J, Kane KA, Cobbe SM, Hicks MN. Regional electrophysiological effects of left ventricular hypertrophy in isolated rabbit hearts under normal and ischaemic conditions. Cardiovasc Res. 2000;48:120–128. doi: 10.1016/S0008-6363(00)00149-8. PubMed DOI
Zhao Z, Chen L, Xiao Y-B, Hao J, Tang C-Z, Zheng D-Z. A rabbit model to study regression of ventricular hypertrophy. Heart Lung Circ. 2013;22:373–382. doi: 10.1016/j.hlc.2012.11.021. PubMed DOI
Adams MG, Drew BJ. Body position effects on the ECG. J Electrocardiol. 1997;30:285–291. doi: 10.1016/S0022-0736(97)80040-4. PubMed DOI
Schijvenaars BJA, Kors JA, Herpen G, Kornreich F, Bemmel JH. Effect of electrode positioning on ECG interpretation by computer. J Eectrocardiol. 1997;30:247–256. doi: 10.1016/S0022-0736(97)80010-6. PubMed DOI
Ronzhina M, Olejníčková V, Janoušek O, Kolářová J, Nováková M, Provazník I. Effects of heart orientation on isolated hearts electrograms. Comput Cardiol. 2013:543–6.
Bacharova L, Szathmary V, Kovalcik M, Mateasik A. Effect of changes in left ventricular anatomy and conduction velocity on the QRS voltage and morphology in left ventricular hypertrophy: a model study. J Electrocardiol. 2010;43:200–208. doi: 10.1016/j.jelectrocard.2009.07.014. PubMed DOI
Estes EH, Jacksin KP. The electrogram in left ventricular hypertrophy: past and future. J Electrocardiol. 2009;42:589–592. doi: 10.1016/j.jelectrocard.2009.06.016. PubMed DOI
Budhwani N, Patel S, Dwyer EM. Electrocardiographic diagnosis of left ventricular hypertrophy: the effect of left ventricular wall thickness, size, and mass on the specific criteria for left ventricular hypertrophy. Am Heart J. 2005;149:709–714. doi: 10.1016/j.ahj.2004.07.040. PubMed DOI
Schillaci G, Battista F, Pucci G. A review of the role of electrocardiography in the diagnosis of left ventricular hypertrophy in hypertension. J Electrocardiol. 2012;45:617–623. doi: 10.1016/j.jelectrocard.2012.08.051. PubMed DOI
Hejč J, Vítek M, Ronzhina M, Nováková M, Kolářová J. A wavelet-based ECG delineation method: adaptation to an experimental electrograms with manifested global ischemia. Cardiovasc Eng Technol. 2015;6:364–375. doi: 10.1007/s13239-015-0224-z. PubMed DOI
Okin PM, Roman MJ, Devereux RB, Pickering TG, Borer JS, Kligfield P. Time-voltage QRS area of the 12-lead electrocardiogram: detection of left ventricular hypertrophy. Hypertension. 1998;31:937–942. doi: 10.1161/01.HYP.31.4.937. PubMed DOI
Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD. Third universal definition of myocardial infarction. JACC. 2012;60:1581–1598. doi: 10.1016/j.jacc.2012.08.001. PubMed DOI
Podesser B, Wollenek G, Seitelberger R, Siegel H, Wolner E, Firbas W, Tschabitscher M. Epicardial branches of the coronary arteries and their distribution in the rabbit heart: the rabbit heart as a model of regional ischemia. Anat Rec. 1997;247:521–527. doi: 10.1002/(SICI)1097-0185(199704)247:4<521::AID-AR11>3.0.CO;2-R. PubMed DOI
Camici PG, Olivotto I, Rimoldi OE. The coronary circulation and blood flow in left ventricular hypertrophy. JMMC. 2012;52:857–864. PubMed
Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens. 2015;29:1–6. doi: 10.1038/jhh.2014.36. PubMed DOI
Surawicz B, Tavel M. Stress test. In: Surawicz B, Knilans TK, editors. Chou’s electrocardiography in clinical practice. Philadelphia: Saunders Elsevier; 2008. pp. 221–255.