• This record comes from PubMed

Phytostabilization-Management Strategy for Stabilizing Trace Elements in Contaminated Soils

. 2017 Aug 25 ; 14 (9) : . [epub] 20170825

Language English Country Switzerland Media electronic

Document type Journal Article

Contamination of soil by copper (Cu) has become a serious problem throughout the world, causing the reduction of agricultural yield and harmful effects on human health by entering the food chain. A glasshouse pot experiment was designed to evaluate the potential use of halloysite as an immobilizing agent in the aided phytostabilization of Cu-contaminated soil, using Festuca rubra L. The content of Cu in plants, i.e., total and extracted by 0.01 M CaCl₂, was determined using the method of spectrophotometry. Cu content in the tested parts of F. rubra differed significantly when halloysite was applied to the soil, as well as with increasing concentrations of Cu. The addition of halloysite significantly increased plant biomass. Cu accumulated in the roots, thereby reducing its toxicity to the aerial parts of the plant. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using F. rubra in phytostabilization techniques.

See more in PubMed

Herojeet R., Rishi M.S., Kishore N. Integrated approach of heavy metal pollution indices and complexity quanti fication using chemometric models in the Sirsa Basin, Nalagarh valley, Himachal Pradesh, India. Chin. J. Geochem. 2015;34:620–633. doi: 10.1007/s11631-015-0075-1. DOI

Singh U.K., Kumar B. Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere. 2017;174:183–199. doi: 10.1016/j.chemosphere.2017.01.103. PubMed DOI

Nuclear Fusion Construction Deal Expected at Russia’s G8 Summit. [(accessed on 25 August 2017)]; Available online: http://www.ens-newswire.com/ens/feb2006/2006-02-03-02.asp.

Mazur Z., Radziemska M., Maczuga O., Makuch A. Heavy metal concentrations in soil and moss surroundings railroad. Fresen. Environ. Bull. 2013;4:955–961.

Christou A., Theologides C.P., Costa C., Kalavrouziotis I.K., Varnavas S.P. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 2017;178:16–22. doi: 10.1016/j.gexplo.2017.03.012. DOI

Fronczyk J., Radziemska M., Mazur Z. Copper removal from contaminated groundwater using natural and engineered limestone sand in permeable reactive barriers. Fresen. Environ. Bull. 2015;24:228–234.

Harvey P.J., Handley H.K., Taylor M.P. Widespread copper and lead contamination of household drinking water, New South Wales, Australia. Environ. Res. 2016;151:275–285. doi: 10.1016/j.envres.2016.07.041. PubMed DOI

Sas W., Głuchowski A., Radziemska M., Dzięcioł J., Szymański A. Environmental and geotechnical assessment of the steel slags as a material for road structure. Materials. 2016;8:4857–4875. doi: 10.3390/ma8084857. PubMed DOI PMC

Voberková S., Vaverková M.D., Burešová A., Adamcová D., Vršanská M., Kynicky J., Brtnicky M., Adam V. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manag. 2017;61:157–164. doi: 10.1016/j.wasman.2016.12.039. PubMed DOI

Adamcová D., Radziemska M., Ridošková A., Bartoň S., Pelcová P., Elbl J., Kynický J., Brtnický M., Vaverková M.D. Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere. 2017;185:1011–1018. doi: 10.1016/j.chemosphere.2017.07.060. PubMed DOI

Radziemska M., Fronczyk J. Level and contamination assessment of soil along an expressway in an ecologically valuable area, central Poland. Int. J. Environ. Res. Public Health. 2014;12:13372–13387. doi: 10.3390/ijerph121013372. PubMed DOI PMC

Kim M., Li L.Y., Gorgy T., Grace J.R. Review of contamination of sewage sludge and amended soils by polybrominated diphenyl ethers based on meta-analysis. Environ. Poll. 2017;220:753–765. doi: 10.1016/j.envpol.2016.10.053. PubMed DOI

Anjum N.A., Adam V., Kizek R., Duarte A.C., Pereira E., Muhammad I., Alexander S., Lukatkin I.A. Nanoscale copper in the soil-plant system—Toxicity and underlying potential mechanisms. Environ. Res. 2015;138:306–325. doi: 10.1016/j.envres.2015.02.019. PubMed DOI

Cundy A.B., Bardos R.P., Church A., Puschenreiter M., Friesl-Hanl W., Müller I., Neu S., Mench M., Witters N., Vangronsveld J. Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: The European context. J. Environ. Manag. 2013;129:283–291. doi: 10.1016/j.jenvman.2013.07.032. PubMed DOI

Radziemska M., Gusiatin Z.M., Bilgin A. Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol. Eng. 2017;102:490–500. doi: 10.1016/j.ecoleng.2017.02.028. DOI

Gil-Loaiza J., White S.A., Root R.A., Solís-Dominguez F.A., Hammond C.M., Chorover J., Maier R.M. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Sci. Total Environ. 2016;565:451–461. doi: 10.1016/j.scitotenv.2016.04.168. PubMed DOI PMC

Touceda-Gonzalez M., Alvarez-Lopeza V., Prieto-Fernandez A., Rodríguez-Garrido B., Trasar-Cepeda C., Mench M., Puschenreiter M., Quintela-Sabarís C., Macías-García F., Kidd P.S. Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J. Environ. Manag. 2017;186:301–313. doi: 10.1016/j.jenvman.2016.09.019. PubMed DOI

Prasad M.N.V., Freitas H. Trace Elements in the Environment: Biogeochemistry, Biotechnology and Bioremediation. Humana Press; New York, NY, USA: 2006. p. 301.

Gołda S., Korzeniowska J. Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Environ. Protect. Nat. Res. 2016;27:8–14. doi: 10.1515/oszn-2016-0003. DOI

Padmavathiamma P., Li L. Phytoremediation of metal-contaminated soil in temperate regions of British Columbia, Canada. Int. J. Phytoremediat. 2009;11:575–590. doi: 10.1080/15226510902717606. PubMed DOI

Wong Y., Lam E., Tam N. Physiological effects of copper treatment and its uptake pattern in Festuca rubra cv. Merlin. Resour. Conserv. Recycl. 1994;11:311–319. doi: 10.1016/0921-3449(94)90098-1. DOI

Yin L., Ren A., Wei M., Wu L., Zhou Y., Li X., Gao Y. Neotyphodium coenophialum-infected tall fescue and its potential application in the phytoremediation of saline soils. Int. J. Phytoremediat. 2014;16:235–246. doi: 10.1080/15226514.2013.773275. PubMed DOI

Labidi S., Firmin S., Verdin A., Bidar G., Laruelle F., Douay F., Shirali P., Fontaine J., Sahraoui A.L.H. Nature of fly ash amendments differently influences oxidative stress alleviation in four forest tree species and metal trace element phytostabilization in aged contaminated soil: A long-term field experiment. Ecotox. Environ. Saf. 2017;138:190–198. doi: 10.1016/j.ecoenv.2016.12.027. PubMed DOI

Kalenik M. Sewage treatment efficacy of sandy soil bed with natural clinoptiolite assist layer. Ochr. Sr. 2014;36:43–48.

Radziemska M., Mazur Z., Fronczyk J., Matusik J. Co-remediation of Ni-contaminated soil by halloysite and Indian mustard (Brassica juncea L.) Clay Miner. 2016;51:489–497. doi: 10.1180/claymin.2016.051.3.08. DOI

Bus A., Karczmarczyk A., Baryla A. The use of reactive material for limiting P-leaching from green roof substrate. Water Sci. Technol. 2016;73:3027–3032. doi: 10.2166/wst.2016.173. PubMed DOI

Gusiatin Z.M., Kulikowska D. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts. Environ. Technol. 2016;37:2337–2347. doi: 10.1080/09593330.2016.1150348. PubMed DOI

Jones S., Bardos R.P., Kidd P.S., Mench M., Leij F., Hutchings T., Cundy A., Joyce C., Soja G., Friesl-Hanl W., et al. Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. J. Environ. Manag. 2016;171:101–112. doi: 10.1016/j.jenvman.2016.01.024. PubMed DOI

Haloizyt–Właściwości, Funkcjonalizacja i Zastosowanie. [(accessed on 23 August 2017)]; Available online: http://www.supra.amu.edu.pl/files/monographs/e-srodowisko_i_przemysl_t4.pdf.

Sakiewicz P., Nowosielski R., Pilarczyk W., Gołombek K., Lutyński M. Selected properties of the halloysite as a component of Geosynthetic Clay Liners (GCL) JAMME. 2011;48:177–191.

Sakiewicz P., Lutyński M., Sołtys J., Pytliński A. Purification of halloysite by magnetic separation. Physicochem. Probl. Miner. Process. 2016;52:991–1001.

Radziemska M., Mazur Z., Fronczyk J., Jeznach J. Effect of zeolite and halloysite on accumulation of trace elements in maize (Zea Mays L.) in nickel contaminated soil. Fresen. Environ. Bull. 2014;23:3140–3146.

Radziemska M., Mazur Z., Jeznach J. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.) Chem. Eng. Trans. 2013;32:301–306.

Radziemska M., Jeznach J., Mazur Z., Fronczyk J., Bilgin A. Assessment of the effect of reactive materials on the content of selected elements in Indian mustard grown in Cu-contaminated soils. J. Water Land Dev. 2016;28:53–60. doi: 10.1515/jwld-2016-0005. DOI

Kabata-Pendias A. Trace Elements in Soils and Plants. 4th ed. CRC Press; Boca Raton, FL, USA: 2011.

Narendrula R., Nkongolo K.K., Beckett P. Comparative soil metal analyses in Sudbury (Ontario, Canada) and Lubumbashi (Katanga, DR-Congo) Bull. Environ. Contam. Toxicol. 2012;88:187–192. doi: 10.1007/s00128-011-0485-7. PubMed DOI

Churchman G.J., Whitton J.S., Claridge G.G.C., Theng B.K.G. Intercalation method using formamide for differentiating halloysite from kaolinite. Clays Clay Miner. 1984;32:241–248. doi: 10.1346/CCMN.1984.0320401. DOI

Szczepanik B., Słomkiewicz P., Garnuszek M., Czech K., Banas D., Kubala-Kukus A., Stabrawa I. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies. J. Mol. Struc. 2015;1084:16–22. doi: 10.1016/j.molstruc.2014.12.008. DOI

Klute A. Methods of Soil Analysis. American Society of Agronomy; Agronomy Monograph; Madison, WI, USA: 1996. p. 9.

Riehm H. Die ammoniumlaktatessigsaure-methode zur bestimmung derleichtloeslichen phosphosaure in karbonathaltigen boden. Agrochimica. 1958;3:49–65. (In Polish)

Lityński T., Jurkowska H., Gorlach E. Chemical and Agriculture Analysis. PWN; Warszawa, Poland: 1976. pp. 129–132. (In Polish)

Bremner J.M. Methods of Soil Analysis. ACSESS; Madison, WI, USA: 1965. pp. 1256–1286.

Mocek A., Drzymała S. Genesis, Analysis and Soil Classification. Poznan University of Life Sciences; Poznań, Poland: 2010.

Pueyo M., López-Sanchez J.F., Rauret G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal. Chim. Acta. 2004;504:217–226. doi: 10.1016/j.aca.2003.10.047. DOI

Krivankova E., Adamcova D., Vaverkova M.D., Havlicek Z. Use of PhytotoxkitTM test in assessment of toxicity of two types of sewage sludge; Proceedings of the International PhD Students Conference; Brno, Czech Republic. 16–18 March 2016.

Phytotoxkit . Standard Operation Procedure. MicroBioTests Inc.; Nazareth, Belgium: 2004. Seed Germination and Early Growth Microbiotest with Higher Plants; pp. 1–24.

Polish Committee of Standardization . PN-80/C-04532 Method B Bulk Density Determination. Polish Committee of Standardization; Warsaw, Poland: 1980. (In Polish)

Koda E., Osinski P., Kolanka T. Flow numerical modeling for efficiency assessment of vertical barriers in landfills. In: Manassero M., Dominijanni A., Foti S., Musso G., editors. Coupled Phenomena in Environmental Geotechnics: From Theoretical and Experimental Research to Practical Applications, Proceedings of International Symposium TC215 ISSMGE, Torino, Italy, 1–3 July 2013. CRC Press; London, UK: 2013. pp. 693–698.

Minnikova T.V., Denisova T.V., Mandzhieva S.S., Kolesnikov S.I., Minkina T.M., Chaplygin V.A., Burachevskaya M.V., Sushkova S.N., Bauer T.V. Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. J. Geochem. Explor. 2017;174:70–78. doi: 10.1016/j.gexplo.2016.06.007. DOI

Mustafa G., Komatsu S. Toxicity of heavy metals and metal-containing nanoparticles on plants. BBA—Proteins Proteom. 2016;1864:932–944. doi: 10.1016/j.bbapap.2016.02.020. PubMed DOI

Benimeli C.S., Medina A., Navarro C.M., Medina R.B., Amoroso M.J., Gómez M.I. Bioaccumulation of copper by Zea mays: Impact on root, shoot and leaf growth. Water Air Soil Pollut. 2009;55:1–6. doi: 10.1007/s11270-009-0259-6. DOI

Wyszkowski M., Radziemska M. Effects of chromium (III and VI) on spring barley and maize biomass yield and content if nitrogenous compounds. J. Toxicol. Environ. Heal. A. 2010;73:1274–1282. doi: 10.1080/15287394.2010.492016. PubMed DOI

Wyszkowski M., Radziemska M. Assessment of tri- and hexavalent chromium phytotoxicity on oats (Avena sativa L.) biomass and content of nitrogen compounds. Water Air Soil Pollut. 2013;244:1619–1632. doi: 10.1007/s11270-013-1619-9. PubMed DOI PMC

Sun Y., Li Y., Xu Y., Liang X., Wang L. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl. Clay Sci. 2014;105–106:200–206. doi: 10.1016/j.clay.2014.12.031. DOI

Friesl W., Lombi E., Horak O., Wenzel W.W. Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. J. Plant Nutr. Soil Sci. 2003;166:191–196. doi: 10.1002/jpln.200390028. DOI

Sharaff M., Kamat S., Archana G. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils. Ecotox. Environ. Saf. 2017;138:113–121. doi: 10.1016/j.ecoenv.2016.12.023. PubMed DOI

Mazur Z., Radziemska M., Fronczyk J., Jeznach J. Heavy metal accumulation in bioindicators of pollution in urban areas of northeastern Poland. Fresen. Environ. Bull. 2015;24:216–223.

Shutcha M.N., Faucon M.P., Kissi C.K., Colinet G., Mahy G., Luhembwe M.N., Visser M., Meerts P. Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo) Ecol. Eng. 2015;82:81–90. doi: 10.1016/j.ecoleng.2015.04.062. DOI

Nirola R., Megharaj M., Palanisami T., Aryal R., Venkateswarlu K., Naidu R. Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine—A quest for phytostabilization. J. Sustain. Min. 2015;14:115–123. doi: 10.1016/j.jsm.2015.11.001. DOI

Sinnett D.E., Lawrence V.K., Hutchings T.R., Hodson M.E. Plants growing on contaminated and brownfield sites appropriate for use in Organisation for economic co-operation and development terrestrial plant growth test. Environ. Toxicol. Chem. 2011;30:124–131. doi: 10.1002/etc.360. PubMed DOI

Chapman E.E.V., Helmer S.H., Dave G., Murimboh J.D. Utility of bioassays (lettuce, red clover, red fescue, Microtox, MetSTICK, Hyalella, bait lamina) in ecological risk screening of acid metal (Zn) contaminated soil. Ecotox. Environ. Saf. 2012;80:161–171. doi: 10.1016/j.ecoenv.2012.02.025. PubMed DOI

Shorrocks V.M., Alloway B.J. Copper in Plant, Animal and Human Nutrition. Copper Development Association; New York, NY, USA: 1988. pp. 1–106.

Szostek R., Ciećko Z. Effect of soil contamination with fluorine on the yield and content of nitrogen forms in the biomass of crops. Environ. Sci. Pollut. Res. 2017;24:9. doi: 10.1007/s11356-017-8523-6. PubMed DOI PMC

Wyszkowski M., Radziemska M. The effect of chromium content in soil on the concentration of some mineral elements in plants. Fresen. Environ. Bull. 2009;18:1039–1045.

Meers E., Lamsal S., Vervaeke P., Hopgood M., Lust N., Tack F.M.G. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environ. Pollut. 2005;137:354–364. doi: 10.1016/j.envpol.2004.12.019. PubMed DOI

Abad-Valle P., Álvarez-Ayuso E., Murciego A., Pellitero E. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil. Geoderma. 2016;280:57–66. doi: 10.1016/j.geoderma.2016.06.015. DOI

Thomas G., Andresen E., Mattusch J., Hubácek T., Küpper H. Deficiency and toxicity of nanomolar copper in low irradiance—A physiological and metalloproteomic study in the aquatic plant Ceratophyllum demersum. Aquat. Toxicol. 2016;177:226–236. doi: 10.1016/j.aquatox.2016.05.016. PubMed DOI

Lee S.H., Kim E.H., Park H., Yoon J.H., Kim J.G. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma. 2011;161:1–7. doi: 10.1016/j.geoderma.2010.11.008. DOI

Shaheen S.M., Tsadilas C.D., Rinklebe J. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Adv. Colloid Interface Sci. 2013;201–202:43–56. doi: 10.1016/j.cis.2013.10.005. PubMed DOI

Ye X., Kang S., Wang H., Li H., Zhang Y., Wang G., Zhaoa Y. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils. J. Hazard. Mater. 2015;289:210–218. doi: 10.1016/j.jhazmat.2015.02.052. PubMed DOI

Jin Y., Liu W., Li H.-L., Shen S.-G., Liang S.-X., Liu C., Shan L. Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecol. Eng. 2016;95:25–29. doi: 10.1016/j.ecoleng.2016.06.071. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...