Phytostabilization-Management Strategy for Stabilizing Trace Elements in Contaminated Soils
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
28841169
PubMed Central
PMC5615495
DOI
10.3390/ijerph14090958
PII: ijerph14090958
Knihovny.cz E-resources
- Keywords
- aided phytostabilization, clay minerals, metal contaminated soil, red fescue, risk minimization,
- MeSH
- Biodegradation, Environmental MeSH
- Biomass MeSH
- Festuca growth & development metabolism MeSH
- Plant Roots growth & development metabolism MeSH
- Soil Pollutants chemistry metabolism MeSH
- Copper chemistry metabolism MeSH
- Aluminum Silicates chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Soil Pollutants MeSH
- Copper MeSH
- Aluminum Silicates MeSH
Contamination of soil by copper (Cu) has become a serious problem throughout the world, causing the reduction of agricultural yield and harmful effects on human health by entering the food chain. A glasshouse pot experiment was designed to evaluate the potential use of halloysite as an immobilizing agent in the aided phytostabilization of Cu-contaminated soil, using Festuca rubra L. The content of Cu in plants, i.e., total and extracted by 0.01 M CaCl₂, was determined using the method of spectrophotometry. Cu content in the tested parts of F. rubra differed significantly when halloysite was applied to the soil, as well as with increasing concentrations of Cu. The addition of halloysite significantly increased plant biomass. Cu accumulated in the roots, thereby reducing its toxicity to the aerial parts of the plant. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using F. rubra in phytostabilization techniques.
See more in PubMed
Herojeet R., Rishi M.S., Kishore N. Integrated approach of heavy metal pollution indices and complexity quanti fication using chemometric models in the Sirsa Basin, Nalagarh valley, Himachal Pradesh, India. Chin. J. Geochem. 2015;34:620–633. doi: 10.1007/s11631-015-0075-1. DOI
Singh U.K., Kumar B. Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere. 2017;174:183–199. doi: 10.1016/j.chemosphere.2017.01.103. PubMed DOI
Nuclear Fusion Construction Deal Expected at Russia’s G8 Summit. [(accessed on 25 August 2017)]; Available online: http://www.ens-newswire.com/ens/feb2006/2006-02-03-02.asp.
Mazur Z., Radziemska M., Maczuga O., Makuch A. Heavy metal concentrations in soil and moss surroundings railroad. Fresen. Environ. Bull. 2013;4:955–961.
Christou A., Theologides C.P., Costa C., Kalavrouziotis I.K., Varnavas S.P. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 2017;178:16–22. doi: 10.1016/j.gexplo.2017.03.012. DOI
Fronczyk J., Radziemska M., Mazur Z. Copper removal from contaminated groundwater using natural and engineered limestone sand in permeable reactive barriers. Fresen. Environ. Bull. 2015;24:228–234.
Harvey P.J., Handley H.K., Taylor M.P. Widespread copper and lead contamination of household drinking water, New South Wales, Australia. Environ. Res. 2016;151:275–285. doi: 10.1016/j.envres.2016.07.041. PubMed DOI
Sas W., Głuchowski A., Radziemska M., Dzięcioł J., Szymański A. Environmental and geotechnical assessment of the steel slags as a material for road structure. Materials. 2016;8:4857–4875. doi: 10.3390/ma8084857. PubMed DOI PMC
Voberková S., Vaverková M.D., Burešová A., Adamcová D., Vršanská M., Kynicky J., Brtnicky M., Adam V. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manag. 2017;61:157–164. doi: 10.1016/j.wasman.2016.12.039. PubMed DOI
Adamcová D., Radziemska M., Ridošková A., Bartoň S., Pelcová P., Elbl J., Kynický J., Brtnický M., Vaverková M.D. Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere. 2017;185:1011–1018. doi: 10.1016/j.chemosphere.2017.07.060. PubMed DOI
Radziemska M., Fronczyk J. Level and contamination assessment of soil along an expressway in an ecologically valuable area, central Poland. Int. J. Environ. Res. Public Health. 2014;12:13372–13387. doi: 10.3390/ijerph121013372. PubMed DOI PMC
Kim M., Li L.Y., Gorgy T., Grace J.R. Review of contamination of sewage sludge and amended soils by polybrominated diphenyl ethers based on meta-analysis. Environ. Poll. 2017;220:753–765. doi: 10.1016/j.envpol.2016.10.053. PubMed DOI
Anjum N.A., Adam V., Kizek R., Duarte A.C., Pereira E., Muhammad I., Alexander S., Lukatkin I.A. Nanoscale copper in the soil-plant system—Toxicity and underlying potential mechanisms. Environ. Res. 2015;138:306–325. doi: 10.1016/j.envres.2015.02.019. PubMed DOI
Cundy A.B., Bardos R.P., Church A., Puschenreiter M., Friesl-Hanl W., Müller I., Neu S., Mench M., Witters N., Vangronsveld J. Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: The European context. J. Environ. Manag. 2013;129:283–291. doi: 10.1016/j.jenvman.2013.07.032. PubMed DOI
Radziemska M., Gusiatin Z.M., Bilgin A. Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol. Eng. 2017;102:490–500. doi: 10.1016/j.ecoleng.2017.02.028. DOI
Gil-Loaiza J., White S.A., Root R.A., Solís-Dominguez F.A., Hammond C.M., Chorover J., Maier R.M. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Sci. Total Environ. 2016;565:451–461. doi: 10.1016/j.scitotenv.2016.04.168. PubMed DOI PMC
Touceda-Gonzalez M., Alvarez-Lopeza V., Prieto-Fernandez A., Rodríguez-Garrido B., Trasar-Cepeda C., Mench M., Puschenreiter M., Quintela-Sabarís C., Macías-García F., Kidd P.S. Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J. Environ. Manag. 2017;186:301–313. doi: 10.1016/j.jenvman.2016.09.019. PubMed DOI
Prasad M.N.V., Freitas H. Trace Elements in the Environment: Biogeochemistry, Biotechnology and Bioremediation. Humana Press; New York, NY, USA: 2006. p. 301.
Gołda S., Korzeniowska J. Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Environ. Protect. Nat. Res. 2016;27:8–14. doi: 10.1515/oszn-2016-0003. DOI
Padmavathiamma P., Li L. Phytoremediation of metal-contaminated soil in temperate regions of British Columbia, Canada. Int. J. Phytoremediat. 2009;11:575–590. doi: 10.1080/15226510902717606. PubMed DOI
Wong Y., Lam E., Tam N. Physiological effects of copper treatment and its uptake pattern in Festuca rubra cv. Merlin. Resour. Conserv. Recycl. 1994;11:311–319. doi: 10.1016/0921-3449(94)90098-1. DOI
Yin L., Ren A., Wei M., Wu L., Zhou Y., Li X., Gao Y. Neotyphodium coenophialum-infected tall fescue and its potential application in the phytoremediation of saline soils. Int. J. Phytoremediat. 2014;16:235–246. doi: 10.1080/15226514.2013.773275. PubMed DOI
Labidi S., Firmin S., Verdin A., Bidar G., Laruelle F., Douay F., Shirali P., Fontaine J., Sahraoui A.L.H. Nature of fly ash amendments differently influences oxidative stress alleviation in four forest tree species and metal trace element phytostabilization in aged contaminated soil: A long-term field experiment. Ecotox. Environ. Saf. 2017;138:190–198. doi: 10.1016/j.ecoenv.2016.12.027. PubMed DOI
Kalenik M. Sewage treatment efficacy of sandy soil bed with natural clinoptiolite assist layer. Ochr. Sr. 2014;36:43–48.
Radziemska M., Mazur Z., Fronczyk J., Matusik J. Co-remediation of Ni-contaminated soil by halloysite and Indian mustard (Brassica juncea L.) Clay Miner. 2016;51:489–497. doi: 10.1180/claymin.2016.051.3.08. DOI
Bus A., Karczmarczyk A., Baryla A. The use of reactive material for limiting P-leaching from green roof substrate. Water Sci. Technol. 2016;73:3027–3032. doi: 10.2166/wst.2016.173. PubMed DOI
Gusiatin Z.M., Kulikowska D. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts. Environ. Technol. 2016;37:2337–2347. doi: 10.1080/09593330.2016.1150348. PubMed DOI
Jones S., Bardos R.P., Kidd P.S., Mench M., Leij F., Hutchings T., Cundy A., Joyce C., Soja G., Friesl-Hanl W., et al. Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. J. Environ. Manag. 2016;171:101–112. doi: 10.1016/j.jenvman.2016.01.024. PubMed DOI
Haloizyt–Właściwości, Funkcjonalizacja i Zastosowanie. [(accessed on 23 August 2017)]; Available online: http://www.supra.amu.edu.pl/files/monographs/e-srodowisko_i_przemysl_t4.pdf.
Sakiewicz P., Nowosielski R., Pilarczyk W., Gołombek K., Lutyński M. Selected properties of the halloysite as a component of Geosynthetic Clay Liners (GCL) JAMME. 2011;48:177–191.
Sakiewicz P., Lutyński M., Sołtys J., Pytliński A. Purification of halloysite by magnetic separation. Physicochem. Probl. Miner. Process. 2016;52:991–1001.
Radziemska M., Mazur Z., Fronczyk J., Jeznach J. Effect of zeolite and halloysite on accumulation of trace elements in maize (Zea Mays L.) in nickel contaminated soil. Fresen. Environ. Bull. 2014;23:3140–3146.
Radziemska M., Mazur Z., Jeznach J. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.) Chem. Eng. Trans. 2013;32:301–306.
Radziemska M., Jeznach J., Mazur Z., Fronczyk J., Bilgin A. Assessment of the effect of reactive materials on the content of selected elements in Indian mustard grown in Cu-contaminated soils. J. Water Land Dev. 2016;28:53–60. doi: 10.1515/jwld-2016-0005. DOI
Kabata-Pendias A. Trace Elements in Soils and Plants. 4th ed. CRC Press; Boca Raton, FL, USA: 2011.
Narendrula R., Nkongolo K.K., Beckett P. Comparative soil metal analyses in Sudbury (Ontario, Canada) and Lubumbashi (Katanga, DR-Congo) Bull. Environ. Contam. Toxicol. 2012;88:187–192. doi: 10.1007/s00128-011-0485-7. PubMed DOI
Churchman G.J., Whitton J.S., Claridge G.G.C., Theng B.K.G. Intercalation method using formamide for differentiating halloysite from kaolinite. Clays Clay Miner. 1984;32:241–248. doi: 10.1346/CCMN.1984.0320401. DOI
Szczepanik B., Słomkiewicz P., Garnuszek M., Czech K., Banas D., Kubala-Kukus A., Stabrawa I. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies. J. Mol. Struc. 2015;1084:16–22. doi: 10.1016/j.molstruc.2014.12.008. DOI
Klute A. Methods of Soil Analysis. American Society of Agronomy; Agronomy Monograph; Madison, WI, USA: 1996. p. 9.
Riehm H. Die ammoniumlaktatessigsaure-methode zur bestimmung derleichtloeslichen phosphosaure in karbonathaltigen boden. Agrochimica. 1958;3:49–65. (In Polish)
Lityński T., Jurkowska H., Gorlach E. Chemical and Agriculture Analysis. PWN; Warszawa, Poland: 1976. pp. 129–132. (In Polish)
Bremner J.M. Methods of Soil Analysis. ACSESS; Madison, WI, USA: 1965. pp. 1256–1286.
Mocek A., Drzymała S. Genesis, Analysis and Soil Classification. Poznan University of Life Sciences; Poznań, Poland: 2010.
Pueyo M., López-Sanchez J.F., Rauret G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal. Chim. Acta. 2004;504:217–226. doi: 10.1016/j.aca.2003.10.047. DOI
Krivankova E., Adamcova D., Vaverkova M.D., Havlicek Z. Use of PhytotoxkitTM test in assessment of toxicity of two types of sewage sludge; Proceedings of the International PhD Students Conference; Brno, Czech Republic. 16–18 March 2016.
Phytotoxkit . Standard Operation Procedure. MicroBioTests Inc.; Nazareth, Belgium: 2004. Seed Germination and Early Growth Microbiotest with Higher Plants; pp. 1–24.
Polish Committee of Standardization . PN-80/C-04532 Method B Bulk Density Determination. Polish Committee of Standardization; Warsaw, Poland: 1980. (In Polish)
Koda E., Osinski P., Kolanka T. Flow numerical modeling for efficiency assessment of vertical barriers in landfills. In: Manassero M., Dominijanni A., Foti S., Musso G., editors. Coupled Phenomena in Environmental Geotechnics: From Theoretical and Experimental Research to Practical Applications, Proceedings of International Symposium TC215 ISSMGE, Torino, Italy, 1–3 July 2013. CRC Press; London, UK: 2013. pp. 693–698.
Minnikova T.V., Denisova T.V., Mandzhieva S.S., Kolesnikov S.I., Minkina T.M., Chaplygin V.A., Burachevskaya M.V., Sushkova S.N., Bauer T.V. Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. J. Geochem. Explor. 2017;174:70–78. doi: 10.1016/j.gexplo.2016.06.007. DOI
Mustafa G., Komatsu S. Toxicity of heavy metals and metal-containing nanoparticles on plants. BBA—Proteins Proteom. 2016;1864:932–944. doi: 10.1016/j.bbapap.2016.02.020. PubMed DOI
Benimeli C.S., Medina A., Navarro C.M., Medina R.B., Amoroso M.J., Gómez M.I. Bioaccumulation of copper by Zea mays: Impact on root, shoot and leaf growth. Water Air Soil Pollut. 2009;55:1–6. doi: 10.1007/s11270-009-0259-6. DOI
Wyszkowski M., Radziemska M. Effects of chromium (III and VI) on spring barley and maize biomass yield and content if nitrogenous compounds. J. Toxicol. Environ. Heal. A. 2010;73:1274–1282. doi: 10.1080/15287394.2010.492016. PubMed DOI
Wyszkowski M., Radziemska M. Assessment of tri- and hexavalent chromium phytotoxicity on oats (Avena sativa L.) biomass and content of nitrogen compounds. Water Air Soil Pollut. 2013;244:1619–1632. doi: 10.1007/s11270-013-1619-9. PubMed DOI PMC
Sun Y., Li Y., Xu Y., Liang X., Wang L. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl. Clay Sci. 2014;105–106:200–206. doi: 10.1016/j.clay.2014.12.031. DOI
Friesl W., Lombi E., Horak O., Wenzel W.W. Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. J. Plant Nutr. Soil Sci. 2003;166:191–196. doi: 10.1002/jpln.200390028. DOI
Sharaff M., Kamat S., Archana G. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils. Ecotox. Environ. Saf. 2017;138:113–121. doi: 10.1016/j.ecoenv.2016.12.023. PubMed DOI
Mazur Z., Radziemska M., Fronczyk J., Jeznach J. Heavy metal accumulation in bioindicators of pollution in urban areas of northeastern Poland. Fresen. Environ. Bull. 2015;24:216–223.
Shutcha M.N., Faucon M.P., Kissi C.K., Colinet G., Mahy G., Luhembwe M.N., Visser M., Meerts P. Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo) Ecol. Eng. 2015;82:81–90. doi: 10.1016/j.ecoleng.2015.04.062. DOI
Nirola R., Megharaj M., Palanisami T., Aryal R., Venkateswarlu K., Naidu R. Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine—A quest for phytostabilization. J. Sustain. Min. 2015;14:115–123. doi: 10.1016/j.jsm.2015.11.001. DOI
Sinnett D.E., Lawrence V.K., Hutchings T.R., Hodson M.E. Plants growing on contaminated and brownfield sites appropriate for use in Organisation for economic co-operation and development terrestrial plant growth test. Environ. Toxicol. Chem. 2011;30:124–131. doi: 10.1002/etc.360. PubMed DOI
Chapman E.E.V., Helmer S.H., Dave G., Murimboh J.D. Utility of bioassays (lettuce, red clover, red fescue, Microtox, MetSTICK, Hyalella, bait lamina) in ecological risk screening of acid metal (Zn) contaminated soil. Ecotox. Environ. Saf. 2012;80:161–171. doi: 10.1016/j.ecoenv.2012.02.025. PubMed DOI
Shorrocks V.M., Alloway B.J. Copper in Plant, Animal and Human Nutrition. Copper Development Association; New York, NY, USA: 1988. pp. 1–106.
Szostek R., Ciećko Z. Effect of soil contamination with fluorine on the yield and content of nitrogen forms in the biomass of crops. Environ. Sci. Pollut. Res. 2017;24:9. doi: 10.1007/s11356-017-8523-6. PubMed DOI PMC
Wyszkowski M., Radziemska M. The effect of chromium content in soil on the concentration of some mineral elements in plants. Fresen. Environ. Bull. 2009;18:1039–1045.
Meers E., Lamsal S., Vervaeke P., Hopgood M., Lust N., Tack F.M.G. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environ. Pollut. 2005;137:354–364. doi: 10.1016/j.envpol.2004.12.019. PubMed DOI
Abad-Valle P., Álvarez-Ayuso E., Murciego A., Pellitero E. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil. Geoderma. 2016;280:57–66. doi: 10.1016/j.geoderma.2016.06.015. DOI
Thomas G., Andresen E., Mattusch J., Hubácek T., Küpper H. Deficiency and toxicity of nanomolar copper in low irradiance—A physiological and metalloproteomic study in the aquatic plant Ceratophyllum demersum. Aquat. Toxicol. 2016;177:226–236. doi: 10.1016/j.aquatox.2016.05.016. PubMed DOI
Lee S.H., Kim E.H., Park H., Yoon J.H., Kim J.G. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma. 2011;161:1–7. doi: 10.1016/j.geoderma.2010.11.008. DOI
Shaheen S.M., Tsadilas C.D., Rinklebe J. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Adv. Colloid Interface Sci. 2013;201–202:43–56. doi: 10.1016/j.cis.2013.10.005. PubMed DOI
Ye X., Kang S., Wang H., Li H., Zhang Y., Wang G., Zhaoa Y. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils. J. Hazard. Mater. 2015;289:210–218. doi: 10.1016/j.jhazmat.2015.02.052. PubMed DOI
Jin Y., Liu W., Li H.-L., Shen S.-G., Liang S.-X., Liu C., Shan L. Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecol. Eng. 2016;95:25–29. doi: 10.1016/j.ecoleng.2016.06.071. DOI
Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas