Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas

. 2017 Dec 23 ; 15 (1) : . [epub] 20171223

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29295511

The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl₂, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of Indian mustard (Brassica juncea L.) differed significantly in the case of applying amendments to the soil, as well as Cr contamination. The greatest average above-ground biomass was observed when halloysite and dolomite were amended to the soil. Halloysite caused significant increases of Cr concentrations in the roots. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using Indian mustard in phytostabilization techniques. The addition of diatomite significantly increased soil pH. Halloysite and chalcedonite were shown to be the most effective and decreased the average Cr, Cu and Zn contents in soil.

Zobrazit více v PubMed

Koda E., Osiński P., Sieczka A., Wychowaniak D. Areal distribution of ammonium contamination of soil-water environment in the vicinity of old municipal landfill site with vertical barrier. Water. 2015;7:2656–2672. doi: 10.3390/w7062656. DOI

Elia G., Cotecchia F., Pedone G., Vaunat J., Vardon P.J., Pereira C., Springman S.M., Rouainia M., Van Esch J., Koda E., et al. Numerical modelling of slope-vegetation-atmosphere interaction: An overview. Q. J. Eng. Geol. Hydrogeol. 2017;50:249–270. doi: 10.1144/qjegh2016-079. DOI

Sarwar N., Imran M., Shaheen M.R., Ishaque W., Kamran M.A., Matloob A., Rehim A., Hussain S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere. 2017;171:710–721. doi: 10.1016/j.chemosphere.2016.12.116. PubMed DOI

Elbl J., Plošek L., Kintl A., Přichystalová J., Záhora J., Friedel J.K. The effect of increased doses of compost on leaching of mineral nitrogen from arable land. Pol. J. Environ. Stud. 2014;23:697–703.

Adamcová D., Vaverková M.D., Stejska B., Břoušková E. Household solid waste composition focusing on hazardous waste. Pol. J. Environ. Stud. 2016;25:487–493. doi: 10.15244/pjoes/61011. DOI

Parraga-Aguado I., González-Alcaraz M.N., Schulin R., Conesa H.M. The potential use of Piptatherum miliaceum for the phytomanagement of mine tailings in semiarid areas: Role of soil fertility and plant competition. J. Environ. Manag. 2015;158:74–84. doi: 10.1016/j.jenvman.2015.04.041. PubMed DOI

Montiel-Rozas M.M., Madejón E., Madejón P. Evaluation of phytostabilizer ability of three ruderal plants in mining soils restored by application of organic amendments. Ecol. Eng. 2015;83:431–436. doi: 10.1016/j.ecoleng.2015.04.096. DOI

Barajas-Aceves M., Camarillo-Ravelo D., Rodríguez-Vázquez R. Mobility and translocation of heavy metals from mine tailings in three plant species after amendment with compost and biosurfactant. Soil Sediment. Contam. 2015;24:223–249. doi: 10.1080/15320383.2015.946593. DOI

Li X., Huang L. Toward a new paradigm for tailings phytostabilization-nature of the substrates, amendment options, and anthropogenic pedogenesis. Crit. Rev. Environ. Sci. Technol. 2015;45:813–839. doi: 10.1080/10643389.2014.921977. DOI

Galende M.A., Becerril J.M., Barrutia O., Artetxe U., Garbisu C., Hernández A. Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb–Zn contaminated mine soil. J. Geochem. Explor. 2014;145:181–189. doi: 10.1016/j.gexplo.2014.06.006. DOI

Friesl-Hanl W., Platzer K., Riesing J., Horak O., Waldner G., Watzingera A., Gerzabek M.H. Non-destructive soil amendment application techniques on heavy metal-contaminated grassland: Success and long-term immobilizing efficiency. J. Environ. Manag. 2017;186:167–174. doi: 10.1016/j.jenvman.2016.08.068. PubMed DOI

Kumpiene J., Ore S., Renella G., Mench M., Lagerkvist A., Maurice C. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ. Pollut. 2006;144:62–69. doi: 10.1016/j.envpol.2006.01.010. PubMed DOI

Stefaniuk M., Oleszczuk P., Ok Y.S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chem. Eng. J. 2015;287:618–632. doi: 10.1016/j.cej.2015.11.046. DOI

Xu Y., Liang X., Xu Y., Qin X., Huang Q., Wang L., Sun Y. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review. Pedosphere. 2017;27:193–204. doi: 10.1016/S1002-0160(17)60310-2. DOI

Christou A., Theologides C.P., Costa C., Kalavrouziotis I.K., Varnavas S.P. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 2017;178:16–22. doi: 10.1016/j.gexplo.2017.03.012. DOI

Emamverdian A., Ding Y., Mokhberdoran F., Xie Y. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015;2015:1–18. doi: 10.1155/2015/756120. PubMed DOI PMC

Radziemska M., Vaverková M.D., Baryła A. Phytostabilization-management strategy for stabilizing trace elements in contaminated soils. Int. J. Environ. Res. Public Health. 2017;14 doi: 10.3390/ijerph14090958. PubMed DOI PMC

Radziemska M., Gusiatin M., Bilgin A. Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol. Eng. 2017;102:490–500. doi: 10.1016/j.ecoleng.2017.02.028. DOI

Mocek A., Drzymała S. Genesis, Analysis and Soil Classification. Poznan University of Life Sciences; Poznań, Poland: 2010. (In Polish)

U.S. Environmental Protection Agency . Environmental Protection Agency. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. Office of Solid Waste and Emergency Response, U.S. Government Printing Office; Washington, DC, USA: 1998.

Pueyo M., López-Sanchez J.F., Rauret G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal. Chim. Acta. 2004;504:217–226. doi: 10.1016/j.aca.2003.10.047. DOI

Putwattana N., Kruatrachue M., Kumsopa A., Pokethitiyook P. Evaluation of organic and inorganic amendments on maize growth and uptake of Cd and Zn from contaminated paddy soils. Int. J. Phytoremediat. 2015;17:165–174. doi: 10.1080/15226514.2013.876962. PubMed DOI

Xiao R., Bai J., Lu Q., Zhao Q., Gao Z., Wen X., Liu X. Fractionation, transfer and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in estuary of China. Sci. Total Environ. 2015;517:66–75. doi: 10.1016/j.scitotenv.2015.02.052. PubMed DOI

Mendez M.O., Maier R.M. Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ. Health Perspect. 2008;116:278–283. doi: 10.1289/ehp.10608. PubMed DOI PMC

Parra A., Zornoza R., Conesa E., Gómez-López M.D., Faz A. Evaluation of the suitability of three Mediterranean shrub species for phytostabilization of pyritic mine soils. Catena. 2016;136:59–65. doi: 10.1016/j.catena.2015.07.018. DOI

Gomes M.A.C., Hauser-Davis R.A., Suzuki M.S., Vitória A.P. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol. Environ. Saf. 2017;140:55–64. doi: 10.1016/j.ecoenv.2017.01.042. PubMed DOI

Wyszkowski M., Radziemska M. Assessment of tri- and hexavalent chromium phytotoxicity on Oats (Avena sativa L.) biomass and content of nitrogen compounds. Water Air Soil Pollut. 2013;244:1619–1632. doi: 10.1007/s11270-013-1619-9. PubMed DOI PMC

Shanker A.K., Cervantes C., Loza-Tavera H., Avudainayagam S. Chromium toxicity in plants. Environ. Int. 2005;31:739–753. doi: 10.1016/j.envint.2005.02.003. PubMed DOI

Golovatyj S.E., Bogatyreva E.N., Golovatyi S.E. Effect of levels of chromium content in a soil and its distribution in organs of corn plants. Soil Res. Fert. 1999;25:197–204.

Μolla A., Ioannou Z., Mollas S., Skoufogianni E., Dimirkou A. Removal of chromium from soils cultivated with maize (Zea Mays) after the addition of natural minerals as soil amendments. Bull. Environ. Contam. Toxicol. 2017;98:347–352. doi: 10.1007/s00128-017-2044-3. PubMed DOI

Radziemska M., Mazur Z. Content of selected heavy metals in Ni-contaminated soil following the application of halloysite and zeolite. J. Ecol. Eng. 2016;17:125–133. doi: 10.12911/22998993/63336. DOI

Radziemska M., Mazur Z., Jeznach J. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.) Chem. Eng. Trans. 2013;32:301–306.

Sun Y., Wu Q.T., Lee C.C.C., Li B., Long X. Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils. Int. J. Phytoremediat. 2014;16:496–508. doi: 10.1080/15226514.2013.798617. PubMed DOI PMC

Szostek R., Ciećko Z. Effect of soil contamination with fluorine on the yield and content of nitrogen forms in the biomass of crops. Environ. Sci. Pollut. Res. 2017;24:8588–8601. doi: 10.1007/s11356-017-8523-6. PubMed DOI PMC

Wyszkowski M., Radziemska M. Effects of chromium (III and VI) on spring barley and maize biomass yield and content if nitrogenous compounds. J. Toxicol. Environ. Health Part A. 2010;73:1274–1282. doi: 10.1080/15287394.2010.492016. PubMed DOI

Arshad M., Khan A.H.A., Hussain I., Zaman B., Anees M., Iqbal M., Soja G., Linde C., Yousaf S. The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Appl. Soil Ecol. 2017;114:90–98. doi: 10.1016/j.apsoil.2017.02.021. DOI

Dheri G.S., Brar M.S., Malhi S.S. Comparative phytoremediation of chromium-contaminated soils by fenugreek, spinach, and raya. Commun. Soil Sci. Plant. Anal. 2007;38:1655–1672. doi: 10.1080/00103620701380488. DOI

Kanwar M.K., Poonam P.S., Bhardwaj R. Involvement of Asada-Halliwell pathway during phytoremediation of chromium (VI) in Brassica juncea L. plants. Int. J. Phytorem. 2015;17:1237–1243. doi: 10.1080/15226514.2015.1058326. PubMed DOI

Oh Y.J., Kim H., Seo S.H., Hwang B.G., Chang Y.S., Lee J., Lee D.W., Sohn E.J., Lee S.J., Lee Y. Cytochrome b5 reductase 1 triggers serial reactions that lead to iron uptake in plants. Mol. Plant. 2016;9:501–513. doi: 10.1016/j.molp.2015.12.010. PubMed DOI

Maestri E., Marmiroli M. Genetic and molecular aspects of metal tolerance and hyperaccumulation. In: Gupta D.K., Sandalio L.M., editors. Metal Toxicity in Plants: Perception, Signaling and Remediation. Sprigner-Verlag; Berlin/Heidelberg, Germany: 2012. pp. 41–63.

Feng N., Dagan R., Bitton G. Toxicological approach for assessing the heavy metal binding capacity of soils. Soil Sediment. Contam. 2007;16:451–458. doi: 10.1080/15320380701490226. DOI

Yoon J., Cao X., Zhou Q., Ma L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total. Environ. 2006;368:456–464. doi: 10.1016/j.scitotenv.2006.01.016. PubMed DOI

Prapagdee S., Piyatiratitivorakul S., Petsom A., Tawinteung N. Application of biochar for enhancing cadmium and zinc phytostabilization in Vigna radiata L. cultivation. Water Air Soil Pollut. 2014;225:22–33. doi: 10.1007/s11270-014-2233-1. DOI

Abad-Valle P., Álvarez-Ayuso E., Murciego A., Pellitero E. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil. Geoderma. 2016;280:57–66. doi: 10.1016/j.geoderma.2016.06.015. DOI

Huang J., Yuan F., Zeng G., Li X., Gu Y., Shi L., Liu W., Shi Y. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere. 2017;173:199–206. doi: 10.1016/j.chemosphere.2016.12.137. PubMed DOI

Jia W., Wang B., Wang C., Sun H. Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. J. Environ. Chem. Eng. 2017;5:2107–2114. doi: 10.1016/j.jece.2017.04.015. DOI

Willscher S., Jablonski L., Fona Z., Rahmi R., Wittig J. Phytoremediation experiments with under different pH and heavy metal soil concentrations. Hydrometallurgy. 2017;168:153–158. doi: 10.1016/j.hydromet.2016.10.016. DOI

Ye X., Kang S., Wang H., Li H., Zhang Y., Wang G., Zhaoa Y. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils. J. Hazard. Mater. 2015;289:210–218. doi: 10.1016/j.jhazmat.2015.02.052. PubMed DOI

Lee S.H., Kim E.H., Park H., Yoon J.H., Kim J.G. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma. 2011;161:1–7. doi: 10.1016/j.geoderma.2010.11.008. DOI

Keller C., Marchetti M., Rossi L., Lugon-Moulin N. Reduction of cadmium availability to tobacco (Nicotiana tabacum) plants using soil amendments in low cadmium contaminated agricultural soils: A pot experiment. Plant Soil. 2005;276:69–84. doi: 10.1007/s11104-005-3101-y. DOI

Bolan N.S., Park J.H., Robinson B., Naidu R., Huh K.Y. Phytostabilization: A green approach to contaminant containment. Adv. Agron. 2011;12:145–204.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...