Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives

. 2017 Sep 06 ; 33 (9) : 174. [epub] 20170906

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28879631
Odkazy

PubMed 28879631
DOI 10.1007/s11274-017-2339-x
PII: 10.1007/s11274-017-2339-x
Knihovny.cz E-zdroje

Biodegradation of phenolic compounds is a promising alternative to physical and chemical methods used to remove these toxic pollutants from the environment. The ability of various microorganisms to metabolize phenol and its derivatives (alkylphenols, nitrophenols and halogenated derivatives) has therefore been intensively studied. Knowledge of the enzymes catalyzing the individual reactions, the genes encoding these enzymes and the regulatory mechanisms involved in the expression of the respective genes in bacteria serves as a basis for the development of more efficient degraders of phenols via genetic engineering methods. Engineered bacteria which efficiently degrade phenolic compounds were constructed in laboratories using various approaches such as cloning the catabolic genes in multicopy plasmids, the introduction of heterologous genes or broadening the substrate range of key enzymes by mutagenesis. Efforts to apply the engineered strains in in situ bioremediation are problematic, since engineered strains often do not compete successfully with indigenous microorganisms. New efficient degraders of phenolic compounds may be obtained by complex approaches at the organism level, such as genome shuffling or adaptive evolution. The application of these engineered bacteria for bioremediation will require even more complex analysis of both the biological characteristics of the degraders and the physico-chemical conditions at the polluted sites.

Zobrazit více v PubMed

J Agric Food Chem. 2007 Jun 13;55(12):4722-7 PubMed

Appl Environ Microbiol. 2004 Apr;70(4):2391-7 PubMed

J Bacteriol. 2001 Jul;183(14):4227-34 PubMed

J Bacteriol. 2002 Sep;184(17):4672-80 PubMed

Biotechnol Lett. 2010 Sep;32(9):1265-70 PubMed

J Bacteriol. 2008 Nov;190(22):7367-74 PubMed

Nucleic Acids Res. 2016 Mar 18;44(5):2240-54 PubMed

Microb Cell Fact. 2014 Mar 03;13(1):31 PubMed

J Bacteriol. 2004 Jan;186(1):98-103 PubMed

PLoS One. 2012;7(8):e43527 PubMed

Adv Appl Microbiol. 2015;93:107-60 PubMed

Appl Microbiol Biotechnol. 2014 May;98(10):4749-56 PubMed

J Bacteriol. 1997 Feb;179(4):1329-36 PubMed

N Biotechnol. 2012 Nov 15;30(1):88-95 PubMed

J Hazard Mater. 2014 Feb 15;266:42-59 PubMed

Microbiol Mol Biol Rev. 2004 Sep;68(3):474-500, table of contents PubMed

Appl Environ Microbiol. 2002 Sep;68(9):4495-501 PubMed

Biodegradation. 2007 Oct;18(5):525-39 PubMed

Appl Microbiol Biotechnol. 2007 Aug;76(1):159-68 PubMed

Adv Mater. 2016 Apr 20;28(15):2916-22 PubMed

FEMS Microbiol Rev. 2008 Aug;32(5):736-94 PubMed

PLoS One. 2011 Mar 24;6(3):e17350 PubMed

Appl Microbiol Biotechnol. 2014 Oct;98(19):8267-79 PubMed

Appl Environ Microbiol. 2000 Jan;66(1):163-9 PubMed

Lett Appl Microbiol. 2017 Mar;64(3):203-209 PubMed

Appl Environ Microbiol. 2006 Jun;72(6):3933-9 PubMed

Appl Environ Microbiol. 2015 Jan;81(1):220-30 PubMed

Curr Opin Biotechnol. 2000 Oct;11(5):467-75 PubMed

Environ Microbiol. 2003 Dec;5(12):1226-41 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...