Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28879631
DOI
10.1007/s11274-017-2339-x
PII: 10.1007/s11274-017-2339-x
Knihovny.cz E-zdroje
- Klíčová slova
- Adaptive evolution, Genome shuffling, In situ bioremediation, Phenol biodegradation, Phenolic compounds, Synthetic biology,
- MeSH
- Bacteria enzymologie genetika metabolismus MeSH
- bakteriální geny genetika MeSH
- bakteriální proteiny genetika MeSH
- biodegradace * MeSH
- DNA shuffling MeSH
- fenoly chemie metabolismus MeSH
- genetické inženýrství metody MeSH
- nitrofenoly metabolismus MeSH
- regulace genové exprese u bakterií genetika MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fenoly MeSH
- nitrofenoly MeSH
Biodegradation of phenolic compounds is a promising alternative to physical and chemical methods used to remove these toxic pollutants from the environment. The ability of various microorganisms to metabolize phenol and its derivatives (alkylphenols, nitrophenols and halogenated derivatives) has therefore been intensively studied. Knowledge of the enzymes catalyzing the individual reactions, the genes encoding these enzymes and the regulatory mechanisms involved in the expression of the respective genes in bacteria serves as a basis for the development of more efficient degraders of phenols via genetic engineering methods. Engineered bacteria which efficiently degrade phenolic compounds were constructed in laboratories using various approaches such as cloning the catabolic genes in multicopy plasmids, the introduction of heterologous genes or broadening the substrate range of key enzymes by mutagenesis. Efforts to apply the engineered strains in in situ bioremediation are problematic, since engineered strains often do not compete successfully with indigenous microorganisms. New efficient degraders of phenolic compounds may be obtained by complex approaches at the organism level, such as genome shuffling or adaptive evolution. The application of these engineered bacteria for bioremediation will require even more complex analysis of both the biological characteristics of the degraders and the physico-chemical conditions at the polluted sites.
Zobrazit více v PubMed
J Agric Food Chem. 2007 Jun 13;55(12):4722-7 PubMed
Appl Environ Microbiol. 2004 Apr;70(4):2391-7 PubMed
J Bacteriol. 2001 Jul;183(14):4227-34 PubMed
J Bacteriol. 2002 Sep;184(17):4672-80 PubMed
Biotechnol Lett. 2010 Sep;32(9):1265-70 PubMed
J Bacteriol. 2008 Nov;190(22):7367-74 PubMed
Nucleic Acids Res. 2016 Mar 18;44(5):2240-54 PubMed
Microb Cell Fact. 2014 Mar 03;13(1):31 PubMed
J Bacteriol. 2004 Jan;186(1):98-103 PubMed
PLoS One. 2012;7(8):e43527 PubMed
Adv Appl Microbiol. 2015;93:107-60 PubMed
Appl Microbiol Biotechnol. 2014 May;98(10):4749-56 PubMed
J Bacteriol. 1997 Feb;179(4):1329-36 PubMed
N Biotechnol. 2012 Nov 15;30(1):88-95 PubMed
J Hazard Mater. 2014 Feb 15;266:42-59 PubMed
Microbiol Mol Biol Rev. 2004 Sep;68(3):474-500, table of contents PubMed
Appl Environ Microbiol. 2002 Sep;68(9):4495-501 PubMed
Biodegradation. 2007 Oct;18(5):525-39 PubMed
Appl Microbiol Biotechnol. 2007 Aug;76(1):159-68 PubMed
Adv Mater. 2016 Apr 20;28(15):2916-22 PubMed
FEMS Microbiol Rev. 2008 Aug;32(5):736-94 PubMed
PLoS One. 2011 Mar 24;6(3):e17350 PubMed
Appl Microbiol Biotechnol. 2014 Oct;98(19):8267-79 PubMed
Appl Environ Microbiol. 2000 Jan;66(1):163-9 PubMed
Lett Appl Microbiol. 2017 Mar;64(3):203-209 PubMed
Appl Environ Microbiol. 2006 Jun;72(6):3933-9 PubMed
Appl Environ Microbiol. 2015 Jan;81(1):220-30 PubMed
Curr Opin Biotechnol. 2000 Oct;11(5):467-75 PubMed
Environ Microbiol. 2003 Dec;5(12):1226-41 PubMed