• This record comes from PubMed

Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert

. 2017 Sep 11 ; 7 (1) : 11116. [epub] 20170911

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 28894222
PubMed Central PMC5593868
DOI 10.1038/s41598-017-11581-7
PII: 10.1038/s41598-017-11581-7
Knihovny.cz E-resources

The biochemical responses of rock-inhabiting cyanobacteria towards native environmental stresses were observed in vivo in one of the Earth's most challenging extreme climatic environments. The cryptoendolithic cyanobacterial colonization, dominated by Chroococcidiopsis sp., was studied in an ignimbrite at a high altitude volcanic area in the Atacama Desert, Chile. Change in the carotenoid composition (red-shift) within a transect through the cyanobacteria dominant microbial community (average thickness ~1 mm) was unambiguously revealed in their natural endolithic microhabitat. The amount of red shifted carotenoid, observed for the first time in a natural microbial ecosystem, is depth dependent, and increased with increasing proximity to the rock surface, as proven by resonance Raman imaging and point resonance Raman profiling. It is attributed to a light-dependent change in carotenoid conjugation, associated with the light-adaptation strategy of cyanobacteria. A hypothesis is proposed for the possible role of an orange carotenoid protein (OCP) mediated non-photochemical quenching (NPQ) mechanism that influences the observed spectral behavior. Simultaneously, information about the distribution of scytonemin and phycobiliproteins was obtained. Scytonemin was detected in the uppermost cyanobacteria aggregates. A reverse signal intensity gradient of phycobiliproteins was registered, increasing with deeper positions as a response of the cyanobacterial light harvesting complex to low-light conditions.

See more in PubMed

Friedmann EI, Lipkin Y, Ocampo-Paus R. Desert algae of the Negev (Israel) Phycologia. 1967;6:185–200. doi: 10.2216/i0031-8884-6-4-185.1. DOI

Friedmann EI, Ocampo R. Endolithic blue-green-algae in Dry Valleys – primary producers in Antarctic desert ecosystem. Science. 1976;193:1247–1249. doi: 10.1126/science.193.4259.1247. PubMed DOI

Wynn-Williams DD, Edwards HGM, Garcia-Pichel F. Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. Eur. J. Phycol. 1999;34:381–391. doi: 10.1080/09670269910001736442. DOI

Edwards HGM, Newton EM, Dickensheets DL, Wynn-Williams DD. Raman spectroscopic detection of biomolecular markers from Antarctic materials: evaluation for putative Martian habitats. Spectrochim. Acta A. 2003;59:2277–2290. doi: 10.1016/S1386-1425(03)00071-4. PubMed DOI

Wierzchos J, Ascaso C, McKay CP. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology. 2006;6:415–422. doi: 10.1089/ast.2006.6.415. PubMed DOI

Wierzchos J, et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 2015;6:934. doi: 10.3389/fmicb.2015.00934. PubMed DOI PMC

Stivaletta N, Barbieri R, Billi D. Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile) Orig. Life Evol. Biosph. 2012;42:187–200. doi: 10.1007/s11084-012-9289-y. PubMed DOI

Robinson CK, et al. Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ. Microbiol. 2015;17:299–315. doi: 10.1111/1462-2920.12364. PubMed DOI

Dong H, Rech JA, Jiang H, Sun H, Buck BJ. Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. J. Geophysic. Res. 2007;112:G02030.

Wierzchos J, et al. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert; implications for the search for life on Mars. Geobiology. 2011;9:44–60. doi: 10.1111/j.1472-4669.2010.00254.x. PubMed DOI

DiRuggiero J, et al. Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert. Biogeosciences. 2013;10:2439–2450. doi: 10.5194/bg-10-2439-2013. DOI

Wierzchos J, et al. Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert; implications for the search for life on Mars. Icarus. 2013;224:334–346. doi: 10.1016/j.icarus.2012.06.009. DOI

Anderson JC, Robertson DS. Role of carotenoids in protecting chlorophyll from photodestruction. Plant Phys. 1960;35:531–534. doi: 10.1104/pp.35.4.531. PubMed DOI PMC

Krinsky NI. Carotenoid protection against oxidation. Pure Appl. Chem. 1979;51:649–660. doi: 10.1351/pac197951030649. DOI

Siefermann-Harms D. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant. 1987;69:561–568. doi: 10.1111/j.1399-3054.1987.tb09240.x. DOI

Telfer, A., Pascal, A. & Gall, A. Carotenoids in Photosynthesis. In: Carotenoids (Eds: Britton, G., Liaaen-Jensen, S. & Pfander, H.), vol. 4, pp. 265–308 (Birkhäuser Basel, 2008).

Adams WW, III, Demmig-Adams B. Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta. 1992;186:390–398. doi: 10.1007/BF00195320. PubMed DOI

Lunch CK, et al. The xanthophyll cycle and NPQ in diverse desert and aquatic green algae. Photosynth. Res. 2013;115:139–151. doi: 10.1007/s11120-013-9846-x. PubMed DOI

Holt TK, Krogmann DW. A carotenoid-protein from cyanobacteria. Biochim. Biophys. Acta. 1981;637:408–414. doi: 10.1016/0005-2728(81)90045-1. DOI

Kerfeld CA, et al. The crystall structure of a cyanobacterial water-soluble carotenoid binding protein. Structure. 2003;11:55–65. doi: 10.1016/S0969-2126(02)00936-X. PubMed DOI

Wilson A, et al. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell. 2006;18:992–1007. doi: 10.1105/tpc.105.040121. PubMed DOI PMC

Rakhimberdieva MG, Stadnichuk IN, Elanskaya IV, Karapetyan NV. Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-defficient mutant of Synechocystis sp. FEBS Lett. 2004;574:85–88. doi: 10.1016/j.febslet.2004.07.087. PubMed DOI

Kirilovsky, D. & Kerfeld, C. A. Cyanobacterial photoprotection by the orange carotenoid protein. Nature Plants2, 16180 (2016). PubMed

Gill D, Kilponen RG, Rimai L. Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature. 1970;227:743. doi: 10.1038/227743a0. PubMed DOI

Merlin JC. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem. 1985;57:785–792. doi: 10.1351/pac198557050785. DOI

Wilson A, et al. A photoactive carotenoid protein acting as light intensity sensor. Proc. Nat. Acad. Sci. 2008;105:12075–12080. doi: 10.1073/pnas.0804636105. PubMed DOI PMC

Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC. Raman spectra of carotenoids in natural products. Spectrochim. Acta A. 2003;59:2207–2212. doi: 10.1016/S1386-1425(03)00064-7. PubMed DOI

Leverenz RL, et al. Structural and functional modularity of the Orange Carotenoid Protein: distinct roles for the N- and C-terminal domains in cyanobacterial photoprotection. Plant Cell. 2014;26:426–437. doi: 10.1105/tpc.113.118588. PubMed DOI PMC

Leverenz RL, et al. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science. 2015;348:1463–1466. doi: 10.1126/science.aaa7234. PubMed DOI

Gupta S, et al. Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc. Nat. Acad. Sci. 2015;112:E5567–E5574. doi: 10.1073/pnas.1512240112. PubMed DOI PMC

McKay CP, et al. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: Four years of observations including the El Niño of 1997–1998. Astrobiology. 2003;3:393–406. doi: 10.1089/153110703769016460. PubMed DOI

Azúa-Bustos A, Caro-Lara L, Vicuňa R. Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environ. Microbiol. Rep. 2015;7:388–394. doi: 10.1111/1758-2229.12261. PubMed DOI

Cámara B, et al. Ignimbrite textural properties as determinants of endolithic colonization patterns from hyper-arid Atacama Desert. Int. Microbiol. 2015;17:235–247. PubMed

Crits-Christoph A, et al. Phylogenetic and Functional Substrate Specificity for Endolithic Microbial Communities in Hyper-Arid Environments. Front. Microbiol. 2016;7:301. doi: 10.3389/fmicb.2016.00301. PubMed DOI PMC

Rondanelli R, Molina A, Falvey M. The Atacama surface solar maximum. Bull. Am. Meteorol. Soc. 2015;96:405–418. doi: 10.1175/BAMS-D-13-00175.1. DOI

Cabrol NA, et al. Record solar UV irradiance in the tropical Andes. Front. Environ. Sci. 2014;2:19. doi: 10.3389/fenvs.2014.00019. DOI

Vítek P, et al. Phototrophic community in gypsum crust from the Atacama Desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol. J. 2013;30:399–410. doi: 10.1080/01490451.2012.697976. DOI

Szalontai B, Gombos Z, Csizmadia V, Bagyinka C, Lutz M. Structure and interactions of phycocyanobilin chromophores in phycocyanin and allophycocyanin from an analysis of their resonance Raman spectra. Biochemistry. 1994;33:11823–11832. doi: 10.1021/bi00205a019. PubMed DOI

de Oliveira VE, Castro HS, Edwards HGM, de Oliveira LFC. Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J. Raman Spectrosc. 2010;41:642–650. doi: 10.1002/jrs.2493. DOI

Liaaen-Jensen S. Stereochemical aspects of carotenoids. Pure Appl. Chem. 1997;57:649–658.

Vítek P, Ascaso C, Artieda O, Wierzchos J. Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert. Anal. Bioanal. Chem. 2016;408:4083–4092. doi: 10.1007/s00216-016-9497-9. PubMed DOI

Villar SEJ, Edwards HGM, Benning LG. Raman spectroscopic and scanning electron microscopic analysis of a novel biological colonisation of volcanic rocks. Icarus. 2006;184:158–169. doi: 10.1016/j.icarus.2006.04.009. DOI

Oren A, Kühl M, Karsten U. An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol.-Progr. Ser. 1995;128:151–159. doi: 10.3354/meps128151. DOI

Culka A, et al. Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency’s prototype analysis. Philos. Trans. Roy. Soc. A. 2014;372:20140203. doi: 10.1098/rsta.2014.0203. PubMed DOI PMC

Saito T, Miyabe Y, Ide H, Yamamoto O. Hydroxyl radical scavenging ability of bacterioruberin. Radiat. Phys. Chem. 1997;50:267–269. doi: 10.1016/S0969-806X(97)00036-4. DOI

Punginelli C, Wilson A, Routaboul J-M, Kirilovsky D. Influence of zeaxanthin and echinenone binding on the activity of the Orange Carotenoid Protein. Biochim. Biophys. Acta. 2009;1787:280–288. doi: 10.1016/j.bbabio.2009.01.011. PubMed DOI

Jallet D, et al. Specificity of the cyanobacterial Orange Carotenoid Protein: Influences of Orange Carotenoid Protein and Phycobilisome Structures. Plant Physiol. 2014;164:790–804. doi: 10.1104/pp.113.229997. PubMed DOI PMC

Kirilovsky D, Kerfeld CA. The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochem. Photobiol. Sci. 2013;12:1135–1143. doi: 10.1039/c3pp25406b. PubMed DOI

Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynt. Res. 2008;98:551–564. doi: 10.1007/s11120-008-9349-3. PubMed DOI

Boulay C, Abasova L, Six C, Vass I, Kirilovsky D. Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. Biochim. Biophys. Acta. 2008;1777:1344–1354. doi: 10.1016/j.bbabio.2008.07.002. PubMed DOI

Maksimov EG, et al. The signaling state of orange carotenoid protein. Biophys. J. 2015;109:595–607. doi: 10.1016/j.bpj.2015.06.052. PubMed DOI PMC

Koyama Y, Takatsuka I, Nakata M, Tasumi M. Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: Key bands distinguishing stretched or terminal-bent configurations form central-bent configurations. J. Raman Spectrosc. 1988;19:37–49. doi: 10.1002/jrs.1250190107. DOI

González G, Cembrano J, Aron F, Veloso EE, Shyu JBH. Coeval compressional deformation and volcanism in the central Andes, case studies from northern Chile (23°S–24°S) Tectonics. 2009;28:TC6003. doi: 10.1029/2009TC002538. DOI

Find record

Citation metrics

Loading data ...

    Archiving options