Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28894222
PubMed Central
PMC5593868
DOI
10.1038/s41598-017-11581-7
PII: 10.1038/s41598-017-11581-7
Knihovny.cz E-resources
- MeSH
- Pigments, Biological MeSH
- Ecosystem MeSH
- Microscopy, Fluorescence MeSH
- Carotenoids chemistry metabolism MeSH
- Microscopy, Confocal MeSH
- Environmental Microbiology MeSH
- Desert Climate * MeSH
- Cyanobacteria * isolation & purification metabolism MeSH
- Spectrum Analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Pigments, Biological MeSH
- Carotenoids MeSH
The biochemical responses of rock-inhabiting cyanobacteria towards native environmental stresses were observed in vivo in one of the Earth's most challenging extreme climatic environments. The cryptoendolithic cyanobacterial colonization, dominated by Chroococcidiopsis sp., was studied in an ignimbrite at a high altitude volcanic area in the Atacama Desert, Chile. Change in the carotenoid composition (red-shift) within a transect through the cyanobacteria dominant microbial community (average thickness ~1 mm) was unambiguously revealed in their natural endolithic microhabitat. The amount of red shifted carotenoid, observed for the first time in a natural microbial ecosystem, is depth dependent, and increased with increasing proximity to the rock surface, as proven by resonance Raman imaging and point resonance Raman profiling. It is attributed to a light-dependent change in carotenoid conjugation, associated with the light-adaptation strategy of cyanobacteria. A hypothesis is proposed for the possible role of an orange carotenoid protein (OCP) mediated non-photochemical quenching (NPQ) mechanism that influences the observed spectral behavior. Simultaneously, information about the distribution of scytonemin and phycobiliproteins was obtained. Scytonemin was detected in the uppermost cyanobacteria aggregates. A reverse signal intensity gradient of phycobiliproteins was registered, increasing with deeper positions as a response of the cyanobacterial light harvesting complex to low-light conditions.
Global Change Research Institute CAS Bělidla 986 4a 603 00 Brno Czech Republic
Museo Nacional de Ciencias Naturales CSIC c Serrano 115 dpdo 28006 Madrid Spain
See more in PubMed
Friedmann EI, Lipkin Y, Ocampo-Paus R. Desert algae of the Negev (Israel) Phycologia. 1967;6:185–200. doi: 10.2216/i0031-8884-6-4-185.1. DOI
Friedmann EI, Ocampo R. Endolithic blue-green-algae in Dry Valleys – primary producers in Antarctic desert ecosystem. Science. 1976;193:1247–1249. doi: 10.1126/science.193.4259.1247. PubMed DOI
Wynn-Williams DD, Edwards HGM, Garcia-Pichel F. Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. Eur. J. Phycol. 1999;34:381–391. doi: 10.1080/09670269910001736442. DOI
Edwards HGM, Newton EM, Dickensheets DL, Wynn-Williams DD. Raman spectroscopic detection of biomolecular markers from Antarctic materials: evaluation for putative Martian habitats. Spectrochim. Acta A. 2003;59:2277–2290. doi: 10.1016/S1386-1425(03)00071-4. PubMed DOI
Wierzchos J, Ascaso C, McKay CP. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology. 2006;6:415–422. doi: 10.1089/ast.2006.6.415. PubMed DOI
Wierzchos J, et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 2015;6:934. doi: 10.3389/fmicb.2015.00934. PubMed DOI PMC
Stivaletta N, Barbieri R, Billi D. Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile) Orig. Life Evol. Biosph. 2012;42:187–200. doi: 10.1007/s11084-012-9289-y. PubMed DOI
Robinson CK, et al. Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ. Microbiol. 2015;17:299–315. doi: 10.1111/1462-2920.12364. PubMed DOI
Dong H, Rech JA, Jiang H, Sun H, Buck BJ. Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. J. Geophysic. Res. 2007;112:G02030.
Wierzchos J, et al. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert; implications for the search for life on Mars. Geobiology. 2011;9:44–60. doi: 10.1111/j.1472-4669.2010.00254.x. PubMed DOI
DiRuggiero J, et al. Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert. Biogeosciences. 2013;10:2439–2450. doi: 10.5194/bg-10-2439-2013. DOI
Wierzchos J, et al. Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert; implications for the search for life on Mars. Icarus. 2013;224:334–346. doi: 10.1016/j.icarus.2012.06.009. DOI
Anderson JC, Robertson DS. Role of carotenoids in protecting chlorophyll from photodestruction. Plant Phys. 1960;35:531–534. doi: 10.1104/pp.35.4.531. PubMed DOI PMC
Krinsky NI. Carotenoid protection against oxidation. Pure Appl. Chem. 1979;51:649–660. doi: 10.1351/pac197951030649. DOI
Siefermann-Harms D. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant. 1987;69:561–568. doi: 10.1111/j.1399-3054.1987.tb09240.x. DOI
Telfer, A., Pascal, A. & Gall, A. Carotenoids in Photosynthesis. In: Carotenoids (Eds: Britton, G., Liaaen-Jensen, S. & Pfander, H.), vol. 4, pp. 265–308 (Birkhäuser Basel, 2008).
Adams WW, III, Demmig-Adams B. Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta. 1992;186:390–398. doi: 10.1007/BF00195320. PubMed DOI
Lunch CK, et al. The xanthophyll cycle and NPQ in diverse desert and aquatic green algae. Photosynth. Res. 2013;115:139–151. doi: 10.1007/s11120-013-9846-x. PubMed DOI
Holt TK, Krogmann DW. A carotenoid-protein from cyanobacteria. Biochim. Biophys. Acta. 1981;637:408–414. doi: 10.1016/0005-2728(81)90045-1. DOI
Kerfeld CA, et al. The crystall structure of a cyanobacterial water-soluble carotenoid binding protein. Structure. 2003;11:55–65. doi: 10.1016/S0969-2126(02)00936-X. PubMed DOI
Wilson A, et al. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell. 2006;18:992–1007. doi: 10.1105/tpc.105.040121. PubMed DOI PMC
Rakhimberdieva MG, Stadnichuk IN, Elanskaya IV, Karapetyan NV. Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-defficient mutant of Synechocystis sp. FEBS Lett. 2004;574:85–88. doi: 10.1016/j.febslet.2004.07.087. PubMed DOI
Kirilovsky, D. & Kerfeld, C. A. Cyanobacterial photoprotection by the orange carotenoid protein. Nature Plants2, 16180 (2016). PubMed
Gill D, Kilponen RG, Rimai L. Resonance Raman scattering of laser radiation by vibrational modes of carotenoid pigment molecules in intact plant tissues. Nature. 1970;227:743. doi: 10.1038/227743a0. PubMed DOI
Merlin JC. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem. 1985;57:785–792. doi: 10.1351/pac198557050785. DOI
Wilson A, et al. A photoactive carotenoid protein acting as light intensity sensor. Proc. Nat. Acad. Sci. 2008;105:12075–12080. doi: 10.1073/pnas.0804636105. PubMed DOI PMC
Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC. Raman spectra of carotenoids in natural products. Spectrochim. Acta A. 2003;59:2207–2212. doi: 10.1016/S1386-1425(03)00064-7. PubMed DOI
Leverenz RL, et al. Structural and functional modularity of the Orange Carotenoid Protein: distinct roles for the N- and C-terminal domains in cyanobacterial photoprotection. Plant Cell. 2014;26:426–437. doi: 10.1105/tpc.113.118588. PubMed DOI PMC
Leverenz RL, et al. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science. 2015;348:1463–1466. doi: 10.1126/science.aaa7234. PubMed DOI
Gupta S, et al. Local and global structural drivers for the photoactivation of the orange carotenoid protein. Proc. Nat. Acad. Sci. 2015;112:E5567–E5574. doi: 10.1073/pnas.1512240112. PubMed DOI PMC
McKay CP, et al. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: Four years of observations including the El Niño of 1997–1998. Astrobiology. 2003;3:393–406. doi: 10.1089/153110703769016460. PubMed DOI
Azúa-Bustos A, Caro-Lara L, Vicuňa R. Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environ. Microbiol. Rep. 2015;7:388–394. doi: 10.1111/1758-2229.12261. PubMed DOI
Cámara B, et al. Ignimbrite textural properties as determinants of endolithic colonization patterns from hyper-arid Atacama Desert. Int. Microbiol. 2015;17:235–247. PubMed
Crits-Christoph A, et al. Phylogenetic and Functional Substrate Specificity for Endolithic Microbial Communities in Hyper-Arid Environments. Front. Microbiol. 2016;7:301. doi: 10.3389/fmicb.2016.00301. PubMed DOI PMC
Rondanelli R, Molina A, Falvey M. The Atacama surface solar maximum. Bull. Am. Meteorol. Soc. 2015;96:405–418. doi: 10.1175/BAMS-D-13-00175.1. DOI
Cabrol NA, et al. Record solar UV irradiance in the tropical Andes. Front. Environ. Sci. 2014;2:19. doi: 10.3389/fenvs.2014.00019. DOI
Vítek P, et al. Phototrophic community in gypsum crust from the Atacama Desert studied by Raman spectroscopy and microscopic imaging. Geomicrobiol. J. 2013;30:399–410. doi: 10.1080/01490451.2012.697976. DOI
Szalontai B, Gombos Z, Csizmadia V, Bagyinka C, Lutz M. Structure and interactions of phycocyanobilin chromophores in phycocyanin and allophycocyanin from an analysis of their resonance Raman spectra. Biochemistry. 1994;33:11823–11832. doi: 10.1021/bi00205a019. PubMed DOI
de Oliveira VE, Castro HS, Edwards HGM, de Oliveira LFC. Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J. Raman Spectrosc. 2010;41:642–650. doi: 10.1002/jrs.2493. DOI
Liaaen-Jensen S. Stereochemical aspects of carotenoids. Pure Appl. Chem. 1997;57:649–658.
Vítek P, Ascaso C, Artieda O, Wierzchos J. Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert. Anal. Bioanal. Chem. 2016;408:4083–4092. doi: 10.1007/s00216-016-9497-9. PubMed DOI
Villar SEJ, Edwards HGM, Benning LG. Raman spectroscopic and scanning electron microscopic analysis of a novel biological colonisation of volcanic rocks. Icarus. 2006;184:158–169. doi: 10.1016/j.icarus.2006.04.009. DOI
Oren A, Kühl M, Karsten U. An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol.-Progr. Ser. 1995;128:151–159. doi: 10.3354/meps128151. DOI
Culka A, et al. Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency’s prototype analysis. Philos. Trans. Roy. Soc. A. 2014;372:20140203. doi: 10.1098/rsta.2014.0203. PubMed DOI PMC
Saito T, Miyabe Y, Ide H, Yamamoto O. Hydroxyl radical scavenging ability of bacterioruberin. Radiat. Phys. Chem. 1997;50:267–269. doi: 10.1016/S0969-806X(97)00036-4. DOI
Punginelli C, Wilson A, Routaboul J-M, Kirilovsky D. Influence of zeaxanthin and echinenone binding on the activity of the Orange Carotenoid Protein. Biochim. Biophys. Acta. 2009;1787:280–288. doi: 10.1016/j.bbabio.2009.01.011. PubMed DOI
Jallet D, et al. Specificity of the cyanobacterial Orange Carotenoid Protein: Influences of Orange Carotenoid Protein and Phycobilisome Structures. Plant Physiol. 2014;164:790–804. doi: 10.1104/pp.113.229997. PubMed DOI PMC
Kirilovsky D, Kerfeld CA. The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochem. Photobiol. Sci. 2013;12:1135–1143. doi: 10.1039/c3pp25406b. PubMed DOI
Krieger-Liszkay A, Fufezan C, Trebst A. Singlet oxygen production in photosystem II and related protection mechanism. Photosynt. Res. 2008;98:551–564. doi: 10.1007/s11120-008-9349-3. PubMed DOI
Boulay C, Abasova L, Six C, Vass I, Kirilovsky D. Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. Biochim. Biophys. Acta. 2008;1777:1344–1354. doi: 10.1016/j.bbabio.2008.07.002. PubMed DOI
Maksimov EG, et al. The signaling state of orange carotenoid protein. Biophys. J. 2015;109:595–607. doi: 10.1016/j.bpj.2015.06.052. PubMed DOI PMC
Koyama Y, Takatsuka I, Nakata M, Tasumi M. Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: Key bands distinguishing stretched or terminal-bent configurations form central-bent configurations. J. Raman Spectrosc. 1988;19:37–49. doi: 10.1002/jrs.1250190107. DOI
González G, Cembrano J, Aron F, Veloso EE, Shyu JBH. Coeval compressional deformation and volcanism in the central Andes, case studies from northern Chile (23°S–24°S) Tectonics. 2009;28:TC6003. doi: 10.1029/2009TC002538. DOI