Separate neural representations of depression, anxiety and apathy in Parkinson's disease
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28939804
PubMed Central
PMC5610322
DOI
10.1038/s41598-017-12457-6
PII: 10.1038/s41598-017-12457-6
Knihovny.cz E-zdroje
- MeSH
- apatie * MeSH
- deprese komplikace diagnostické zobrazování patofyziologie MeSH
- emoce MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek diagnostické zobrazování patofyziologie MeSH
- nervová síť diagnostické zobrazování patofyziologie MeSH
- Parkinsonova nemoc komplikace diagnostické zobrazování patofyziologie MeSH
- úzkost komplikace diagnostické zobrazování patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Depression, anxiety and apathy are distinct neuropsychiatric symptoms that highly overlap in Parkinson's disease (PD). It remains unknown whether each symptom is uniquely associated with a functional network dysfunction. Here, we examined whether individual differences in each neuropsychiatric symptom predict functional connectivity patterns in PD patients while controlling for all other symptoms and motor function. Resting-state functional connectivity MRI were acquired from 27 PD patients and 29 healthy controls. Widespread reduced functional connectivity was identified in PD patients and explained by either the neuropsychiatric or motor symptoms. Depression in PD predicted increased functional connectivity between the orbitofrontal, hippocampal complex, cingulate, caudate and thalamus. Apathy in PD predicted decreased caudate-thalamus and orbitofrontal-parahippocampal connectivity. Anxiety in PD predicted three distinct types of functional connectivity not described before: (i) increased limbic-orbitofrontal cortex; (ii) decreased limbic-dorsolateral prefrontal cortex and orbitofrontal-dorsolateral prefrontal cortices and (iii) decreased sensorimotor-orbitofrontal cortices. The first two types of functional connectivity suggest less voluntary and more automatic emotion regulation. The last type is argued to be specific to PD and reflect an impaired ability of the orbitofrontal cortex to guide goal-directed motor actions in anxious PD patients.
Department of Radiology Na Homolce Hospital Prague Czech Republic
Edmond and Lily Safra Center for Brain Sciences The Hebrew University of Jerusalem Jerusalem Israel
Zobrazit více v PubMed
Castrioto A, Thobois S, Carnicella S, Maillet A, Krack P. Emotional manifestations of PD: Neurobiological basis. Mov. Disord. 2016;31:1103–1113. doi: 10.1002/mds.26587. PubMed DOI
Barone P, et al. The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov. Disord. 2009;24:1641–1649. doi: 10.1002/mds.22643. PubMed DOI
Langston JW. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann. Neurol. 2006;59:591–596. doi: 10.1002/ana.20834. PubMed DOI
Chaudhuri KR, et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: the NMSQuest study. Mov. Disord. 2006;21:916–923. doi: 10.1002/mds.20844. PubMed DOI
Nègre-Pagès L, et al. Anxious and depressive symptoms in Parkinson’s disease: the French cross-sectionnal DoPaMiP study. Mov. Disord. 2010;25:157–166. doi: 10.1002/mds.22760. PubMed DOI
Aarsland D, et al. Neuropsychiatric symptoms in patients with Parkinson’s disease and dementia: frequency, profile and associated care giver stress. J. Neurol. Neurosurg. Psychiatry. 2007;78:36–42. doi: 10.1136/jnnp.2005.083113. PubMed DOI PMC
Dissanayaka NNW, et al. Anxiety disorders in Parkinson’s disease: prevalence and risk factors. Mov. Disord. 2010;25:838–845. doi: 10.1002/mds.22833. PubMed DOI
Starkstein SE, et al. The syndromal validity and nosological position of apathy in Parkinson’s disease. Mov. Disord. 2009;24:1211–1216. doi: 10.1002/mds.22577. PubMed DOI
Wen M-C, Chan LL, Tan LCS, Tan EK. Depression, anxiety, and apathy in Parkinson’s disease: insights from neuroimaging studies. Eur. J. Neurol. 2016;23:1001–1019. doi: 10.1111/ene.13002. PubMed DOI PMC
Luo C, et al. Resting-state fMRI study on drug-naive patients with Parkinson’s disease and with depression. J. Neurol. Neurosurg. Psychiatry. 2014;85:675–683. doi: 10.1136/jnnp-2013-306237. PubMed DOI
Sheng K, et al. Altered Spontaneous Brain Activity in Patients with Parkinson’s Disease Accompanied by Depressive Symptoms, as Revealed by Regional Homogeneity and Functional Connectivity in the Prefrontal-Limbic System. PLoS One. 2014;9:e84705. doi: 10.1371/journal.pone.0084705. PubMed DOI PMC
Wei L, et al. Aberrant Intra- and Internetwork Functional Connectivity in Depressed Parkinson’s Disease. Sci. Rep. 2017;7:2568. doi: 10.1038/s41598-017-02127-y. PubMed DOI PMC
Lou Y, et al. Altered brain network centrality in depressed Parkinson’s disease patients. Mov. Disord. 2015;30:1777–1784. doi: 10.1002/mds.26321. PubMed DOI
Skidmore FM, et al. Apathy, depression, and motor symptoms have distinct and separable resting activity patterns in idiopathic Parkinson disease. Neuroimage. 2013;81:484–495. doi: 10.1016/j.neuroimage.2011.07.012. PubMed DOI
Hecht D. Depression and the hyperactive right-hemisphere. Neurosci. Res. 2010;68:77–87. doi: 10.1016/j.neures.2010.06.013. PubMed DOI
Mayberg HS. Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br. Med. Bull. 2003;65:193–207. doi: 10.1093/bmb/65.1.193. PubMed DOI
Liang P, et al. Altered directional connectivity between emotion network and motor network in Parkinson’s disease with depression. Medicine. 2016;95:e4222. doi: 10.1097/MD.0000000000004222. PubMed DOI PMC
Erro R, et al. Anxiety is associated with striatal dopamine transporter availability in newly diagnosed untreated Parkinson’s disease patients. Parkinsonism Relat. Disord. 2012;18:1034–1038. doi: 10.1016/j.parkreldis.2012.05.022. PubMed DOI
Moriyama TS, et al. Increased dopamine transporter density in Parkinson’s disease patients with Social Anxiety Disorder. J. Neurol. Sci. 2011;310:53–57. doi: 10.1016/j.jns.2011.06.056. PubMed DOI
Weintraub D, et al. Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson’s disease. J. Nucl. Med. 2005;46:227–232. PubMed
Schapira AH, Ray Chaudhuri K, Jenner P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 2017;18:435–450. doi: 10.1038/nrn.2017.62. PubMed DOI
Shin LM, Liberzon I. The Neurocircuitry of Fear, Stress, and Anxiety Disorders. Neuropsychopharmacology. 2010;35:169–191. doi: 10.1038/npp.2009.83. PubMed DOI PMC
Taylor JM, Whalen PJ. Neuroimaging and Anxiety: the Neural Substrates of Pathological and Non-pathological Anxiety. Curr. Psychiatry Rep. 2015;17:49. doi: 10.1007/s11920-015-0586-9. PubMed DOI
Sylvester CM, et al. Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci. 2012;35:527–535. doi: 10.1016/j.tins.2012.04.012. PubMed DOI PMC
Kim MJ, Gee DG, Loucks RA, Davis FC, Whalen PJ. Anxiety Dissociates Dorsal and Ventral Medial Prefrontal Cortex Functional Connectivity with the Amygdala at Rest. Cereb. Cortex. 2011;21:1667–1673. doi: 10.1093/cercor/bhq237. PubMed DOI PMC
Hahn A, et al. Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. Neuroimage. 2011;56:881–889. doi: 10.1016/j.neuroimage.2011.02.064. PubMed DOI
Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD. Disrupted Amygdalar Subregion Functional Connectivity and Evidence of a Compensatory Network in Generalized Anxiety Disorder. Arch. Gen. Psychiatry. 2009;66:1361. doi: 10.1001/archgenpsychiatry.2009.104. PubMed DOI
Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol. Psychiatry. 2008;13:833–857. doi: 10.1038/mp.2008.65. PubMed DOI PMC
Balleine BW, O’Doherty JP. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology. 2010;35:48–69. doi: 10.1038/npp.2009.131. PubMed DOI PMC
Redgrave P, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat. Rev. Neurosci. 2010;11:760–772. doi: 10.1038/nrn2915. PubMed DOI PMC
de Wit S, Barker RA, Dickinson AD, Cools R. Habitual versus goal-directed action control in Parkinson disease. J. Cogn. Neurosci. 2011;23:1218–1229. doi: 10.1162/jocn.2010.21514. PubMed DOI
FitzGerald TH, Friston KJ, Dolan RJ. Action-specific value signals in reward-related regions of the human brain. J. Neurosci. 2012;32:16417–16423a. doi: 10.1523/JNEUROSCI.3254-12.2012. PubMed DOI PMC
Schoenbaum G, Roesch M. Orbitofrontal cortex, associative learning, and expectancies. Neuron. 2005;47:633–636. doi: 10.1016/j.neuron.2005.07.018. PubMed DOI PMC
Dias-Ferreira E, et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science. 2009;325:621–625. doi: 10.1126/science.1171203. PubMed DOI
Schwabe L, Wolf OT. Stress-induced modulation of instrumental behavior: from goal-directed to habitual control of action. Behav. Brain Res. 2011;219:321–328. doi: 10.1016/j.bbr.2010.12.038. PubMed DOI
Levy R, Dubois B. Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb. Cortex. 2006;16:916–928. doi: 10.1093/cercor/bhj043. PubMed DOI
Wang X, et al. Cerebral metabolic change in Parkinson’s disease patients with anxiety: A FDG-PET study. Neurosci. Lett. 2017;653:202–207. doi: 10.1016/j.neulet.2017.05.062. PubMed DOI
Baggio HC, et al. Resting-state frontostriatal functional connectivity in Parkinson’s disease-related apathy. Mov. Disord. 2015;30:671–679. doi: 10.1002/mds.26137. PubMed DOI
Le Jeune F, et al. Subthalamic nucleus stimulation in Parkinson disease induces apathy: a PET study. Neurology. 2009;73:1746–1751. doi: 10.1212/WNL.0b013e3181c34b34. PubMed DOI
Santangelo G, et al. Apathy and striatal dopamine transporter levels in de-novo, untreated Parkinson’s disease patients. Parkinsonism Relat. Disord. 2015;21:489–493. doi: 10.1016/j.parkreldis.2015.02.015. PubMed DOI
Robert GH, et al. Preoperative factors of apathy in subthalamic stimulated Parkinson disease: a PET study. Neurology. 2014;83:1620–1626. doi: 10.1212/WNL.0000000000000941. PubMed DOI
Luo C, et al. Reduced functional connectivity in early-stage drug-naive Parkinson’s disease: a resting-state fMRI study. Neurobiol. Aging. 2014;35:431–441. doi: 10.1016/j.neurobiolaging.2013.08.018. PubMed DOI
Tessitore A, et al. Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology. 2012;79:2226–2232. doi: 10.1212/WNL.0b013e31827689d6. PubMed DOI
Hacker CD, Perlmutter JS, Criswell SR, Ances BM, Snyder AZ. Resting state functional connectivity of the striatum in Parkinson’s disease. Brain. 2012;135:3699–3711. doi: 10.1093/brain/aws281. PubMed DOI PMC
New AB, et al. The intrinsic resting state voice network in Parkinson’s disease. Hum. Brain Mapp. 2015;36:1951–1962. doi: 10.1002/hbm.22748. PubMed DOI PMC
Witjas T, et al. Nonmotor fluctuations in Parkinson’s disease: frequent and disabling. Neurology. 2002;59:408–413. doi: 10.1212/WNL.59.3.408. PubMed DOI
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry. 1992;55:181–184. doi: 10.1136/jnnp.55.3.181. PubMed DOI PMC
Deuschl G, et al. Stimulation of the subthalamic nucleus at an earlier disease stage of Parkinson’s disease: Concept and standards of the EARLYSTIM-study. Park. Relat. Disord. 2013;19:56–61. doi: 10.1016/j.parkreldis.2012.07.004. PubMed DOI
Fahn, S. & Elton, R. In Recent developments in Parkinson’s Disease (eds Fahn, S., Marsden, C., Calne, D. & Goldstein, M.) 153–63 (FlorhamPark, NJ: MacMillanHealthCare, 1987).
Beck AT, Steer RA, Brown GK. Beck depression inventory-II. San Antonio. 1996;78:490–8.
Spielberger, C. D., Gorsuch, R. L. & Lushene, R. E. Manual for the State-Trait Anxiety Inventory. Palo Alto (1970).
Starkstein SE, et al. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 1992;4:134–139. doi: 10.1176/jnp.4.2.134. PubMed DOI
Leentjens AF, et al. Apathy and anhedonia rating scales in Parkinson’s disease: Critique and recommendations. Mov. Disord. 2008;23:2004–2014. doi: 10.1002/mds.22229. PubMed DOI
Nasreddine ZS, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x. PubMed DOI
Litvan I, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov. Disord. 2012;27:349–356. doi: 10.1002/mds.24893. PubMed DOI PMC
Bezdicek, O. et al. The Diagnostic Accuracy of Parkinson’s Disease Mild Cognitive Impairment Battery Using the Movement Disorder Society Task Force Criteria. Mov. Disord. Clin. Pract. (2016). PubMed PMC
Solomon SR, Sawilowsky SS. Impact of Rank-Based Normalizing Transformations on the Accuracy of Test Scores. J. Mod. Appl. Stat. Methods. 2009;8:448–462. doi: 10.22237/jmasm/1257034080. DOI
Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–141. doi: 10.1089/brain.2012.0073. PubMed DOI
Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage. 2007;37:90–101. doi: 10.1016/j.neuroimage.2007.04.042. PubMed DOI PMC
Muschelli J, et al. Reduction of motion-related artifacts in resting state fMRI using aCompCor. Neuroimage. 2014;96:22–35. doi: 10.1016/j.neuroimage.2014.03.028. PubMed DOI PMC
Chai XJ, Castañón AN, Öngür D, Whitfield-Gabrieli S. Anticorrelations in resting state networks without global signal regression. Neuroimage. 2012;59:1420–1428. doi: 10.1016/j.neuroimage.2011.08.048. PubMed DOI PMC
Tzourio-Mazoyer N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–289. doi: 10.1006/nimg.2001.0978. PubMed DOI
Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One. 2013;8:e68910. doi: 10.1371/journal.pone.0068910. PubMed DOI PMC
Yekutieli D, Benjamini Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J. Stat. Plan. Inference. 1999;82:171–196. doi: 10.1016/S0378-3758(99)00041-5. DOI
Tomlinson CL, et al. Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Mov. Disord. 2010;25:2649–2653. doi: 10.1002/mds.23429. PubMed DOI