Hop Phytochemicals and Their Potential Role in Metabolic Syndrome Prevention and Therapy
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
29048380
PubMed Central
PMC6151408
DOI
10.3390/molecules22101761
PII: molecules22101761
Knihovny.cz E-resources
- Keywords
- cholesterol, diabetes, hops, iso-α-acids, matured hop bitter acids, metabolic syndrome, obesity, xanthohumol,
- MeSH
- Flavonoids chemistry pharmacology therapeutic use MeSH
- Phytochemicals chemistry pharmacology therapeutic use MeSH
- Glucose Tolerance Test MeSH
- Humulus chemistry MeSH
- Humans MeSH
- Metabolic Syndrome drug therapy prevention & control MeSH
- Lipid Metabolism drug effects MeSH
- Molecular Structure MeSH
- Propiophenones pharmacology therapeutic use MeSH
- Body Weight drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Flavonoids MeSH
- Phytochemicals MeSH
- Propiophenones MeSH
- xanthohumol MeSH Browser
Historically, hop cones (Humulus lupulus) have been used since ancient times as a remedy for many ailments and, as a source of polyphenols and bitter acids, is very effective in the treatment of metabolic syndrome (MS). Hop flavonoids, particularly xanthohumol (XN), are substances with hypoglycemic, antihyperlipidemic, and antiobesity activities. Iso-α-acids (IAA) and matured hop bitter acids (MHBA) improve health by influencing lipid metabolism, glucose tolerance, and body weight. The modulatory effect of IAA and MHBA on lipid metabolism may also be responsible for a loss in body weight. These results suggest promising applications for IAA, MHBA, and XN in humans, particularly in the prevention of diet-induced obesity and diabetes.
See more in PubMed
Calzolari D., Magagnini G., Lucini L., Grassi G., Appendino G.B., Amaducci S. High added-value compounds from Cannabis threshing residues. Ind. Crop Prod. 2017;108:558–563. doi: 10.1016/j.indcrop.2017.06.063. DOI
Appendino G., Chianese G., Taglialatela-Scafati O. Cannabinoids: Occurrence and medicinal chemistry. Curr. Med. Chem. 2011;18:1085–1099. doi: 10.2174/092986711794940888. PubMed DOI
Roberts T.R., Wilson R.J.H. Hops. In: Priest F.G., Stewart G.G., editors. Handbook of Brewing. 2nd ed. CRC Press, Taylor and Francis Group; Boca Raton, FL, USA: 2006. pp. 177–279.
Karabin M., Hudcova T., Jelinek L., Dostalek P. Biologically active compounds from hops and prospects for their use. Compr. Rev. Food Sci. Food Saf. 2016;15:542–567. doi: 10.1111/1541-4337.12201. PubMed DOI
Karabin M., Hudcova T., Jelinek L., Dostalek P. Biotransformations and biological activities of hop flavonoids. Biotechnol. Adv. 2015;33:1063–1090. doi: 10.1016/j.biotechadv.2015.02.009. PubMed DOI
Koetter U., Biendl M. Hops (Humulus lupulus): A review of its historic and medicinal uses. HerbalGram. 2010;87:44–57.
Zanoli P., Zavatti M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 2008;116:383–396. doi: 10.1016/j.jep.2008.01.011. PubMed DOI
Dimpfel W., Suter A. Sleep improving effects of a single dose administration of a valerian/hops fluid extract. Eur. J. Med. Res. 2008;13:200–204. PubMed
Milligan S.R., Kalita J.C., Heyerick A., Rong H., De Cooman L., De Keukeleire D. Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J. Clin. Endocrinol. MeTab. 1999;84:2249–2252. doi: 10.1210/jcem.84.6.5887. PubMed DOI
Liu M., Yin H., Qian X.K., Dong J.J., Qian Z.H., Miao J.L. Xanthohumol, a prenylated chalcone from hops, inhibits the viability and stemness of doxorubicin-resistant MCF-7/ADR cells. Molecules. 2017;22:36. doi: 10.3390/molecules22010036. PubMed DOI PMC
Gerhauser C., Alt A., Heiss E., Gamal-Eldeen A., Klimo K., Knauft J., Neumann I., Scherf H.R., Frank N., Bartsch H., et al. Cancer chemopreventive activity of xanthohumol, a natural product derived from hop. Mol. Cancer Ther. 2002;1:959–969. PubMed
Gerhäuser C. Phenolic beer compounds to prevent cancer. In: Preedy V.R., editor. Beer in Health and Disease Prevention. Academic Press; San Diego, CA, USA: 2009. pp. 669–684.
Verzele M., Stockx J., Fontijn F., Anteunis M. Xanthohumol, a new natural chalkone. Bull. Soc. Chim. Belg. 1957;66:452–475. doi: 10.1002/bscb.19570660137. DOI
Liu M., Hansen P.E., Wang G.Z., Qiu L., Dong J.J., Yin H., Qian Z.H., Yang M., Miao J.L. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus) Molecules. 2015;20:754–779. doi: 10.3390/molecules20010754. PubMed DOI PMC
Jelinek L., Karabin M., Kincl T., Hudcova T., Kotlikova B., Dostalek P. Xanthohumol: Possible isolation and beer enrichment. Chem. Listy. 2013;107:209–213.
Magalhaes P.J., Carvalho D.O., Cruz J.M., Guido L.F., Barros A.A. Fundamentals and health benefits of xanthohumol, a natural product derived from hops and beer. Nat. Prod. Commun. 2009;4:591–610. PubMed
Karabin M., Jelinek L., Kincl T., Hudcova T., Kotlikova B., Dostalek P. New approach to the production of xanthohumol-enriched beers. J. Inst. Brew. 2013;119:98–102. doi: 10.1002/jib.71. DOI
Magalhaes P.J., Dostalek P., Cruz J.M., Guido L.F., Barros A.A. The impact of a xanthohumol-enriched hop product on the behavior of xanthohumol and isoxanthohumol in pale and dark beers: A pilot scale approach. J. Inst. Brew. 2008;114:246–256. doi: 10.1002/j.2050-0416.2008.tb00335.x. DOI
Wunderlich S., Zurcher A., Back W. Enrichment of xanthohumol in the brewing process. Mol. Nutr. Food Res. 2005;49:874–881. doi: 10.1002/mnfr.200500051. PubMed DOI
Verzele M., De Keukeleire D. Developments in Food Science—Chemistry and Analysis of Hop and Beer Bitter Acids. Volume 27. Elsevier; Amsterdam, The Netherlands: 1991. pp. 1–417.
Hofta P., Dostalek P., Sykora D. Liquid chromatography-diode array and electrospray high-accuracy mass spectrometry of iso-a-acids in DCHA-iso standard and beer. J. Inst. Brew. 2007;113:48–54. doi: 10.1002/j.2050-0416.2007.tb00255.x. DOI
Karabin M., Ryparova A., Jelinek L., Kunz T., Wietstock P., Methner F.J., Dostalek P. Relationship of iso-a-acid content and endogenous antioxidative potential during storage of lager beer. J. Inst. Brew. 2014;120:212–219. doi: 10.1002/jib.140. DOI
De Keukeleire D., Verzele M. The absolute configuration of the isohumulones and the humulinic acids. Tetrahedron. 1971;27:4939–4945. doi: 10.1016/S0040-4020(01)98199-2. DOI
Urban J., Dahlberg C.J., Carroll B.J., Kaminsky W. Absolute configuration of beer’s bitter compounds. Angew. Chem. Int. Ed. 2013;52:1553–1555. doi: 10.1002/anie.201208450. PubMed DOI PMC
Cermak P., Paleckova V., Houska M., Strohalm J., Novotna P., Mikyska A., Jurkova M., Sikorova M. Inhibitory effects of fresh hops on Helicobacter pylori strains. Czech J. Food Sci. 2015;33:302–307. doi: 10.17221/261/2014-CJFS. DOI
Taniguchi Y., Matsukura Y., Ozaki H., Nishimura K., Shindo K. Identification and quantification of the oxidation products derived from α-acids and β-acids during storage of hops (Humulus lupulus L.) J. Agric. Food. Chem. 2013;61:3121–3130. doi: 10.1021/jf3047187. PubMed DOI
Taniguchi Y., Taniguchi H., Matsukura Y., Kawachi Y., Shindo K. Structural elucidation of humulone autoxidation products and analysis of their occurrence in stored hops. J. Nat. Prod. 2014;77:1252–1261. doi: 10.1021/np4008427. PubMed DOI
Taniguchi Y., Matsukura Y., Taniguchi H., Koizumi H., Katayama M. Development of preparative and analytical methods of the hop bitter acid oxide fraction and chemical properties of its components. Biosci. Biotechnol. Biochem. 2015;79:1684–1694. doi: 10.1080/09168451.2015.1042832. PubMed DOI
Almaguer C., Schonberger C., Gastl M., Arendt E.K., Becker T. Humulus lupulus: A story that begs to be told. A review. J. Inst. Brew. 2014;120:289–314. doi: 10.1002/jib.160. DOI
Stevens J.F., Page J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry. 2004;65:1317–1330. doi: 10.1016/j.phytochem.2004.04.025. PubMed DOI
Stevens J.F., Taylor A.W., Clawson J.E., Deinzer M.L. Fate of xanthohumol and related prenylflavonoids from hops to beer. J. Agric. Food Chem. 1999;47:2421–2428. doi: 10.1021/jf990101k. PubMed DOI
Kylin E. Studien ueber das hypertonie-hyperglykämie-hyperurikämiesyndrom. Zent. Inn. Med. 1923;44:105–127.
Vague J. The degree of masculine differentiation of obesities: A factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am. J. Clin. Nutr. 1956;4:20–34. doi: 10.1002/j.1550-8528.1996.tb00536.x. PubMed DOI
Himsworth H.P. Diabetes mellitus: Its differentiation into insulin-sensitive and insulin-insensitive types. Lancet. 1936;227:127–130. doi: 10.1016/S0140-6736(01)36134-2. PubMed DOI
Reaven G.M. Role of insulin resistance in human-disease. Diabetes. 1988;37:1595–1607. doi: 10.2337/diab.37.12.1595. PubMed DOI
Kaplan N.M. The deadly quartet: Upper-body obesity, glucose-intolerance, hypertriglyceridemia, and hypertension. Arch. Intern. Med. 1989;149:1514–1520. doi: 10.1001/archinte.1989.00390070054005. PubMed DOI
O’Neill S., O’Driscoll L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015;16:1–12. doi: 10.1111/obr.12229. PubMed DOI
Parikh R., Mohan V. Changing definitions of metabolic syndrome. Indian J. Endocrinol. MeTab. 2012;16:7–12. doi: 10.4103/2230-8210.91175. PubMed DOI PMC
Kaur J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014;2014:21. doi: 10.1155/2014/943162. PubMed DOI PMC
Vollenweider P., von Eckardstein A., Widmann C. HDLs, diabetes, and metabolic syndrome. In: von Eckardstein A., Kardassis D., editors. High Density Lipoproteins: From Biological Understanding to Clinical Exploitation. Springer; Cham, Switzerland: 2015. pp. 405–421. PubMed
Miranda C.L., Stevens J.F., Ivanov V., McCall M., Frei B., Deinzer M.L., Buhler D.R. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agric. Food Chem. 2000;48:3876–3884. doi: 10.1021/jf0002995. PubMed DOI
Legette L.L., Luna A.Y.M., Reed R.L., Miranda C.L., Bobe G., Proteau R.R., Stevens J.F. Xanthohumol lowers body weight and fasting plasma glucose in obese male zucker fa/fa rats. Phytochemistry. 2013;91:236–241. doi: 10.1016/j.phytochem.2012.04.018. PubMed DOI
Dillard C.J., German J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000;80:1744–1756. doi: 10.1002/1097-0010(20000915)80:12<1744::AID-JSFA725>3.0.CO;2-W. DOI
Bland J.S. Metabolic syndrome: The complex relationship of diet to conditions of disturbed. Funct. Foods Health Dis. 2011;1:1–12.
Jones J.L., Comperatore M., Barona J., Calle M.C., Andersen C., McIntosh M., Najm W., Lerman R.H., Fernandez M.L. A mediterranean-style, low-glycemic-load diet decreases atherogenic lipoproteins and reduces lipoprotein (a) and oxidized low-density lipoprotein in women with metabolic syndrome. Metab. Clin. Exp. 2012;61:366–372. doi: 10.1016/j.metabol.2011.07.013. PubMed DOI
Cicero A.F.G., Colletti A. Role of phytochemicals in the management of metabolic syndrome. Phytomedicine. 2016;23:1134–1144. doi: 10.1016/j.phymed.2015.11.009. PubMed DOI
Hanhineva K., Torronen R., Bondia-Pons I., Pekkinen J., Kolehmainen M., Mykkanan H., Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 2010;11:1365–1402. doi: 10.3390/ijms11041365. PubMed DOI PMC
Akaberi M., Hosseinzadeh H. Grapes (Vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytother. Res. 2016;30:540–556. doi: 10.1002/ptr.5570. PubMed DOI
Havsteen B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002;96:67–202. doi: 10.1016/S0163-7258(02)00298-X. PubMed DOI
Mok S.Y., Lee S. Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase. Food Chem. 2013;136:969–974. PubMed
Kantsadi A.L., Apostolou A., Theofanous S., Stravodimos G.A., Kyriakis E., Gorgogietas V.A., Chatzileontiadou D.S.M., Pegiou K., Skamnaki V.T., Stagos D., et al. Biochemical and biological assessment of the inhibitory potency of extracts from vinification byproducts of Vitis vinifera extracts against glycogen phosphorylase. Food Chem. Toxicol. 2014;67:35–43. doi: 10.1016/j.fct.2014.01.055. PubMed DOI
Turner-McGrievy G., Harris M. Key elements of plant-based diets associated with reduced risk of metabolic syndrome. Curr. Diab. Rep. 2015;14:524. doi: 10.1007/s11892-014-0524-y. PubMed DOI
Rodriguez-Monforte M., Sanchez E., Barrio F., Costa B., Flores-Mateo G. Metabolic syndrome and dietary patterns: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2017;56:925–947. doi: 10.1007/s00394-016-1305-y. PubMed DOI
Yang Y.J., Kim Y.J., Yang Y.K., Kim J.Y., Kwon O. Dietary flavan-3-ols intake and metabolic syndrome risk in Korean adults. Nutr. Res. Pract. 2012;6:68–77. doi: 10.4162/nrp.2012.6.1.68. PubMed DOI PMC
Amiot M.J., Riva C., Vinet A. Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obes. Rev. 2016;17:573–586. doi: 10.1111/obr.12409. PubMed DOI
Osakabe N. Flavan 3-ols improve metabolic syndrome risk factors: Evidence and mechanisms. J. Clin. Biochem. Nutr. 2013;52:186–192. doi: 10.3164/jcbn.12-130. PubMed DOI PMC
Habauzit V., Milenkovic D., Morand C. Polyphenols in Human Health and Disease. Elsevier Inc.; San Diego, CA, USA: 2014. Vascular protective effects of fruit polyphenols; pp. 875–893.
Liu M., Yin H., Liu G., Dong J.J., Qian Z.H., Miao J.L. Xanthohumol, a prenylated chalcone from beer hops, acts as an a-glucosidase inhibitor in vitro. J. Agric. Food Chem. 2014;62:5548–5554. doi: 10.1021/jf500426z. PubMed DOI
Marquardt K., Watson R. Polyphenols and public health. In: Watson R., Preedy V., Zibadi S., editors. Polyphenols in Human Health and Disease. Elsevier Inc.; San Diego, CA, USA: 2014. pp. 9–15.
Kar P., Laight D., Rooprai H.K., Shaw K.M., Cummings M. Effects of grape seed extract in type 2 diabetic subjects at high cardiovascular risk: A double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet. Med. 2009;26:526–531. doi: 10.1111/j.1464-5491.2009.02727.x. PubMed DOI
Guo H., Xia M. Anthocyanins and diabetes regulation. In: Watson R., Preedy V., Zibadi S., editors. Polyphenols in Human Health and Disease. Elsevier Inc.; San Diego, CA, USA: 2014. pp. 83–93.
Tan B., Ong K. Influence of dietary polyphenols on carbohydrates metabolism. In: Watson R., Preedy V., Zibadi S., editors. Polyphenols in Human Health and Disease. Elsevier Inc.; San Diego, CA, USA: 2014. pp. 95–111.
Unnikrishnan M., Veerapur V., Nayak Y., Mudgal P., Mathew G. Antidiabetic, antihyperlipidemic and antioxidant effect of the flavonoids. In: Watson R., Preedy V., Zibadi S., editors. Polyphenols in human health and disease. Elsevier Inc.; San Diego, CA, USA: 2014. pp. 143–161.
Prieto M.A.V., Bettaieb A., Lanzi C.R., Soto V.C., Perdicaro D.J., Galmarini C.R., Haj F.G., Miatello R.M., Oteiza P.I. Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and 3T3-L1 adipocytes. Mol. Nutr. Food Res. 2015;59:622–633. doi: 10.1002/mnfr.201400631. PubMed DOI PMC
El-Bassossy H., Badawy D., Neamatallah T., Fahmy A. Ferulic acid, a natural polyphenol, alleviates insulin resistance and hypertension in fructose fed rats: Effect on endothelial-dependent relaxation. Chem. Biol. Interact. 2016;254:191–197. doi: 10.1016/j.cbi.2016.06.013. PubMed DOI
Yang J.Y., Della-Fera M.A., Rayalam S., Baile C.A. Effect of xanthohumol and isoxanthohumol on 3T3-L1 cell apoptosis and adipogenesis. Apoptosis. 2007;12:1953–1963. doi: 10.1007/s10495-007-0130-4. PubMed DOI
Mendes V., Monteiro R., Pestana D., Teixeira D., Calhau C., Azevedo I. Xanthohumol influences preadipocyte differentiation: Implication of anti proliferative and apoptotic effects. J. Agric. Food. Chem. 2008;56:11631–11637. doi: 10.1021/jf802233q. PubMed DOI
Bartmanska A., Tronina T., Poplonski J., Huszcza E. Biotransformations of prenylated hop flavonoids for drug discovery and production. Curr. Drug MeTab. 2013;14:1083–1097. doi: 10.2174/1389200214666131211151855. PubMed DOI
Legette L., Karnpracha C., Reed R.L., Choi J., Bobe G., Christensen J.M., Rodriguez-Proteau R., Purnell J.Q., Stevens J.F. Human pharmacokinetics of xanthohumol, an antihyperglycemic flavonoid from hops. Mol. Nutr. Food Res. 2014;58:248–255. doi: 10.1002/mnfr.201300333. PubMed DOI PMC
Van Breemen R.B., Yuan Y., Banuvar S., Shulman L.P., Qiu X., Alvarenga R.F.R., Chen S.N., Dietz B.M., Bolton J.L., Pauli G.F., et al. Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Mol. Nutr. Food Res. 2014;58:1962–1969. doi: 10.1002/mnfr.201400245. PubMed DOI PMC
Grundy S.M. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J. Am. Coll. Cardiol. 2012;59:635–643. doi: 10.1016/j.jacc.2011.08.080. PubMed DOI
Lamb J.J., Holick M.F., Lerman R.H., Konda V.R., Minich D.M., Desai A., Chen T.C., Austin M., Komberg J., Chang J.L., et al. Nutritional supplementation of hop rho iso-a-acids, berberine, vitamin D3, and vitamin K1 produces a favorable bone biomarker profile supporting healthy bone metabolism in postmenopausal women with metabolic syndrome. Nutr. Res. 2011;31:347–355. doi: 10.1016/j.nutres.2011.03.016. PubMed DOI
Bland J.S., Minich D., Lerman R., Darland G., Lamb J., Tripp M., Grayson N. Isohumulones from hops (Humulus lupulus) and their potential role in medical nutrition therapy. PharmaNutrition. 2015;3:46–52. doi: 10.1016/j.phanu.2015.03.001. DOI
Kern P.A., Finlin B.S., Ross D., Boyechko T., Zhu B., Grayson N., Sims R., Bland J.S. Effects of KDT501 on metabolic parameters in insulin-resistant prediabetic humans. J. Endocr. Soc. 2017;1:650–659. doi: 10.1210/js.2017-00202. PubMed DOI PMC
Yajima H., Ikeshima E., Shiraki M., Kanaya T., Fujiwara D., Odai H., Tsuboyama-Kasaoka N., Ezaki O., Oikawa S., Kondo K. Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor a and g and reduce insulin resistance. J. Biol. Chem. 2004;279:33456–33462. doi: 10.1074/jbc.M403456200. PubMed DOI
Yajima H., Noguchi T., Ikeshima E., Shiraki M., Kanaya T., Tsuboyama-Kasaoka N., Ezaki O., Oikawa S., Kondo K. Prevention of diet-induced obesity by dietary isomerized hop extract containing isohumulones, in rodents. Int. J. Obes. 2005;29:991–997. doi: 10.1038/sj.ijo.0802965. PubMed DOI
Lerman R.H., Minich D.M., Darland G., Lamb J.J., Chang J.L., Hsi A., Bland J.S., Tripp M.L. Subjects with elevated LDL cholesterol and metabolic syndrome benefit from supplementation with soy protein, phytosterols, hops rho iso-a acids, and Acacia nilotica proanthocyanidins. J. Clin. Lipidol. 2010;4:59–68. doi: 10.1016/j.jacl.2009.11.002. PubMed DOI
Miura Y., Hosono M., Oyamada C., Odai H., Oikawa S., Kondo K. Dietary isohumulones, the bitter components of beer, raise plasma HDL-cholesterol levels and reduce liver cholesterol and triacylglycerol contents similar to PPARa activations in C57BL/6 mice. Br. J. Nutr. 2005;93:559–567. doi: 10.1079/BJN20041384. PubMed DOI
Shimura M., Hasumi A., Minato T., Hosono M., Miura Y., Mizutani S., Kondo K., Oikawa S., Yoshida A. Isohumulones modulate blood lipid status through the activation of PPARa. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2005;1736:51–60. PubMed
Van Cleemput M., Cattoor K., De Bosscher K., Haegeman G., De Keukeleire D., Heyerick A. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J. Nat. Prod. 2009;72:1220–1230. doi: 10.1021/np800740m. PubMed DOI
Obara K., Mizutani M., Hitomi Y., Yajima H., Kondo K. Isohumulones, the bitter component of beer, improve hyperglycemia and decrease body fat in Japanese subjects with prediabetes. Clin. Nutr. 2009;28:278–284. doi: 10.1016/j.clnu.2009.03.012. PubMed DOI
Morimoto-Kobayashi Y., Ohara K., Takahashi C., Kitao S., Wang G.Y., Taniguchi Y., Katayama M., Nagai K. Matured hop bittering components induce thermogenesis in brown adipose tissue via sympathetic nerve activity. PLoS ONE. 2015;10:e0131042. doi: 10.1371/journal.pone.0131042. PubMed DOI PMC
Yoneshiro T., Aita S., Matsushita M., Kayahara T., Kameya T., Kawai Y., Iwanaga T., Saito M. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 2013;123:3404–3408. doi: 10.1172/JCI67803. PubMed DOI PMC
Ishibashi J., Seale P. Beige can be slimming. Science. 2010;328:1113–1114. doi: 10.1126/science.1190816. PubMed DOI PMC
Morimoto-Kobayashi Y., Ohara K., Ashigai H., Kanaya T., Koizumi K., Manabe F., Kaneko Y., Taniguchi Y., Katayama M., Kowatari Y., et al. Matured hop extract reduces body fat in healthy overweight humans: A randomized, double-blind, placebo-controlled parallel group study. Nutr. J. 2016;15:25. doi: 10.1186/s12937-016-0144-2. PubMed DOI PMC