Specific neurophysiological mechanisms underlie cognitive inflexibility in inflammatory bowel disease

. 2017 Oct 24 ; 7 (1) : 13943. [epub] 20171024

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29066846
Odkazy

PubMed 29066846
PubMed Central PMC5655331
DOI 10.1038/s41598-017-14345-5
PII: 10.1038/s41598-017-14345-5
Knihovny.cz E-zdroje

Inflammatory bowel disease (IBD) is highly prevalent. While the pathophysiological mechanisms of IBD are increasingly understood, there is a lack of knowledge concerning cognitive dysfunctions in IBD. This is all the more the case concerning the underlying neurophysiological mechanisms. In the current study we focus on possible dysfunctions of cognitive flexibility (task switching) processes in IBD patients using a system neurophysiological approach combining event-related potential (ERP) recordings with source localization analyses. We show that there are task switching deficits (i.e. increased switch costs) in IBD patients. The neurophysiological data show that even though the pathophysiology of IBD is diverse and wide-spread, only specific cognitive subprocesses are altered: There was a selective dysfunction at the response selection level (N2 ERP) associated with functional alterations in the anterior cingulate cortex and the right inferior frontal gyrus. Attentional selection processes (N1 ERP), perceptual categorization processes (P1 ERP), or mechanisms related to the flexible implementation of task sets and related working memory processes (P3 ERP) do not contribute to cognitive inflexibility in IBD patients and were unchanged. It seems that pathophysiological processes in IBD strongly compromise cognitive-neurophysiological subprocesses related to fronto-striatal networks. These circuits may become overstrained in IBD when cognitive flexibility is required.

Zobrazit více v PubMed

Abraham C, Cho J. Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflamm. Bowel Dis. 2009;15:1090–1100. doi: 10.1002/ibd.20894. PubMed DOI

Abraham C, Cho JH. IL-23 and Autoimmunity: New Insights into the Pathogenesis of Inflammatory Bowel Disease. Annu. Rev. Med. 2009;60:97–110. doi: 10.1146/annurev.med.60.051407.123757. PubMed DOI

Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 2008;8:458–466. doi: 10.1038/nri2340. PubMed DOI

Gareau, M. G. in Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease (eds Lyte, M. & Cryan, J. F.) 357–371 (Springer New York, 2014).

Diamond A. Executive Functions. Annu. Rev. Psychol. 2013;64:135–168. doi: 10.1146/annurev-psych-113011-143750. PubMed DOI PMC

Chmielewski WX, Mückschel M, Stock A-K, Beste C. The impact of mental workload on inhibitory control subprocesses. NeuroImage. 2015;112:96–104. doi: 10.1016/j.neuroimage.2015.02.060. PubMed DOI

Beste C, et al. Double dissociated effects of the functional TNF-α −308G/A polymorphism on processes of cognitive control. Neuropsychologia. 2011;49:196–202. doi: 10.1016/j.neuropsychologia.2010.11.037. PubMed DOI

Beste C, Baune BT, Falkenstein M, Konrad C. Variations in the TNF-α gene (TNF-α −308G → A) affect attention and action selection mechanisms in a dissociated fashion. J. Neurophysiol. 2010;104:2523–2531. doi: 10.1152/jn.00561.2010. PubMed DOI

Chudasama Y, Robbins TW. Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol. Psychol. 2006;73:19–38. doi: 10.1016/j.biopsycho.2006.01.005. PubMed DOI

Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C. The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol. Aging. 2011;32:2327.e7–2327.e19. doi: 10.1016/j.neurobiolaging.2011.06.010. PubMed DOI

McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J. Neuroinflammation. 2008;5:45. doi: 10.1186/1742-2094-5-45. PubMed DOI PMC

Sriram K, Miller DB, O’Callaghan JP. Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J. Neurochem. 2006;96:706–718. doi: 10.1111/j.1471-4159.2005.03566.x. PubMed DOI

Sriram K, et al. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2002;16:1474–1476. PubMed

Teismann P, Schwaninger M, Weih F, Ferger B. Nuclear factor-kappaB activation is not involved in a MPTP model of Parkinson’s disease. Neuroreport. 2001;12:1049–1053. doi: 10.1097/00001756-200104170-00037. PubMed DOI

Choy, M. C., Visvanathan, K. & De Cruz, P. An Overview of the Innate and Adaptive Immune System in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 10.1097/MIB.0000000000000955 (2016). PubMed

Kent S, Bret-Dibat JL, Kelley KW, Dantzer R. Mechanisms of sickness-induced decreases in food-motivated behavior. Neurosci. Biobehav. Rev. 1996;20:171–175. doi: 10.1016/0149-7634(95)00037-F. PubMed DOI

Nyuyki KD, Pittman QJ. Toward a better understanding of the central consequences of intestinal inflammation. Ann. N. Y. Acad. Sci. 2015;1351:149–154. doi: 10.1111/nyas.12935. PubMed DOI

Monsell S. Task switching. Trends Cogn. Sci. 2003;7:134–140. doi: 10.1016/S1364-6613(03)00028-7. PubMed DOI

Gajewski PD, Kleinsorge T, Falkenstein M. Electrophysiological correlates of residual switch costs. Cortex. 2010;46:1138–1148. doi: 10.1016/j.cortex.2009.07.014. PubMed DOI

Gehring WJ, Bryck RL, Jonides J, Albin RL, Badre D. The mind’s eye, looking inward? In search of executive control in internal attention shifting. Psychophysiology. 2003;40:572–585. doi: 10.1111/1469-8986.00059. PubMed DOI

Karayanidis F, Coltheart M, Michie PT, Murphy K. Electrophysiological correlates of anticipatory and poststimulus components of task switching. Psychophysiology. 2003;40:329–348. doi: 10.1111/1469-8986.00037. PubMed DOI

Barceló F, Muñoz-Céspedes JM, Pozo MA, Rubia FJ. Attentional set shifting modulates the target P3b response in the Wisconsin card sorting test. Neuropsychologia. 2000;38:1342–1355. doi: 10.1016/S0028-3932(00)00046-4. PubMed DOI

Jamadar S, Hughes M, Fulham WR, Michie PT, Karayanidis F. The spatial and temporal dynamics of anticipatory preparation and response inhibition in task-switching. NeuroImage. 2010;51:432–449. doi: 10.1016/j.neuroimage.2010.01.090. PubMed DOI

Jost K, Mayr U, Rösler F. Is task switching nothing but cue priming? Evidence from ERPs. Cogn. Affect. Behav. Neurosci. 2008;8:74–84. doi: 10.3758/CABN.8.1.74. PubMed DOI

Kieffaber PD, Hetrick WP. Event-related potential correlates of task switching and switch costs. Psychophysiology. 2005;42:56–71. doi: 10.1111/j.1469-8986.2005.00262.x. PubMed DOI

Lorist MM, et al. Mental fatigue and task control: planning and preparation. Psychophysiology. 2000;37:614–625. doi: 10.1111/1469-8986.3750614. PubMed DOI

Poulsen C, Luu P, Davey C, Tucker DM. Dynamics of task sets: evidence from dense-array event-related potentials. Brain Res. Cogn. Brain Res. 2005;24:133–154. doi: 10.1016/j.cogbrainres.2005.01.008. PubMed DOI

Beste C, Kneiphof J, Woitalla D. Effects of fatigue on cognitive control in neurosarcoidosis. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2015;25:522–530. doi: 10.1016/j.euroneuro.2015.01.012. PubMed DOI

Wolff N, Roessner V, Beste C. Behavioral and neurophysiological evidence for increased cognitive flexibility in late childhood. Sci. Rep. 2016;6:28954. doi: 10.1038/srep28954. PubMed DOI PMC

Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C. The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol. Aging. 2011;32:2327.e7–19. doi: 10.1016/j.neurobiolaging.2011.06.010. PubMed DOI

Herrmann CS, Knight RT. Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Biobehav. Rev. 2001;25:465–476. doi: 10.1016/S0149-7634(01)00027-6. PubMed DOI

Beste C, Heil M, Domschke K, Baune BT, Konrad C. Associations between the tumor necrosis factor alpha gene (−308G → A) and event-related potential indices of attention and mental rotation. Neuroscience. 2010;170:742–748. doi: 10.1016/j.neuroscience.2010.07.058. PubMed DOI

Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C. The functional tumor necrosis factor-α (308A/G) polymorphism modulates attentional selection in elderly individuals. Neurobiol. Aging. 2013;34:2694.e1–2694.e12. doi: 10.1016/j.neurobiolaging.2013.04.017. PubMed DOI

Wagenmakers E-J. A practical solution to the pervasive problems ofp values. Psychon. Bull. Rev. 2007;14:779–804. doi: 10.3758/BF03194105. PubMed DOI

Masson MEJ. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav. Res. Methods. 2011;43:679–690. doi: 10.3758/s13428-010-0049-5. PubMed DOI

Raftery AE. Bayesian Model Selection inSocial Research. Sociol. Methodol. 1995;25:111–163. doi: 10.2307/271063. DOI

Rigoli L, Caruso RA. Inflammatory bowel disease in pediatric and adolescent patients: a biomolecular and histopathological review. World J. Gastroenterol. 2014;20:10262–10278. doi: 10.3748/wjg.v20.i30.10262. PubMed DOI PMC

Cosnes J, Gower–Rousseau C, Seksik P, Cortot A. Epidemiology and Natural History of Inflammatory Bowel Diseases. Gastroenterology. 2011;140:1785–1794.e4. doi: 10.1053/j.gastro.2011.01.055. PubMed DOI

Talley, N. J. et al. An evidence-based systematic review on medical therapies for inflammatory bowel disease. Am. J. Gastroenterol. 106Suppl 1, S2–25; quizS26 (2011). PubMed

Attree EA, Dancey CP, Keeling D, Wilson C. Cognitive Function in People With Chronic Illness: Inflammatory Bowel Disease and Irritable Bowel Syndrome. Appl. Neuropsychol. 2003;10:96–104. doi: 10.1207/S15324826AN1002_05. PubMed DOI

Dancey CP, Attree EA, Stuart G, Wilson C. & Sonnet, A. Words fail me: The verbal IQ deficit in inflammatory bowel disease and irritable bowel syndrome. Inflamm. Bowel Dis. 2009;15:852–857. doi: 10.1002/ibd.20837. PubMed DOI

Allport, A. & Wylie, G. in Control of cognitive processes: Attention and performanceXVIII, 35–70 (2000).

Kiesel A, et al. Control and interference in task switching—A review. Psychol. Bull. 2010;136:849–874. doi: 10.1037/a0019842. PubMed DOI

Wascher E, Beste C. Tuning Perceptual Competition. J. Neurophysiol. 2010;103:1057–1065. doi: 10.1152/jn.00376.2009. PubMed DOI

Klimesch W. Evoked alpha and early access to the knowledge system: The P1 inhibition timing hypothesis. Brain Res. 2011;1408:52–71. doi: 10.1016/j.brainres.2011.06.003. PubMed DOI PMC

Petruo VA, Stock A-K, Münchau A, Beste C. A systems neurophysiology approach to voluntary event coding. NeuroImage. 2016;135:324–332. doi: 10.1016/j.neuroimage.2016.05.007. PubMed DOI

Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology. 2008;45:152–170. doi: 10.1111/j.1469-8986.2007.00628.x. PubMed DOI PMC

Swainson R, et al. Cognitive Control Mechanisms Revealed by ERP and fMRI: Evidence from Repeated Task-Switching. J. Cogn. Neurosci. 2003;15:785–799. doi: 10.1162/089892903322370717. PubMed DOI

Swainson R, Jackson SR, Jackson GM. Using advance information in dynamic cognitive control: An ERP study of task-switching. Brain Res. 2006;1105:61–72. doi: 10.1016/j.brainres.2006.02.027. PubMed DOI

Nicholson R, Karayanidis F, Davies A, Michie PT. Components of task-set reconfiguration: Differential effects of ‘switch-to’ and ‘switch-away’ cues. Brain Res. 2006;1121:160–176. doi: 10.1016/j.brainres.2006.08.101. PubMed DOI

Zhang R, Stock A-K, Fischer R, Beste C. The system neurophysiological basis of backward inhibition. Brain Struct. Funct. 2016;221:4575–4587. doi: 10.1007/s00429-016-1186-0. PubMed DOI

Zhang, R., Stock, A.-K. & Beste, C. The neurophysiological basis of reward effects on backward inhibition processes. NeuroImage10.1016/j.neuroimage.2016.05.080(2016). PubMed

Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 2014;18:177–185. doi: 10.1016/j.tics.2013.12.003. PubMed DOI

Bokemeyer B. CED-Behandlung in Deutschland. Gastroenterol. 2007;2:447–455. doi: 10.1007/s11377-007-0113-6. DOI

Bokemeyer B, et al. Clinical status, psychosocial impairments, medical treatment and health care costs for patients with inflammatory bowel disease (IBD) in Germany: An online IBD registry. J. Crohns Colitis. 2013;7:355–368. doi: 10.1016/j.crohns.2012.02.014. PubMed DOI

McAfoose J, Baune BT. Evidence for a cytokine model of cognitive function. Neurosci. Biobehav. Rev. 2009;33:355–366. doi: 10.1016/j.neubiorev.2008.10.005. PubMed DOI

Sriram K, O’Callaghan JP. Divergent Roles for Tumor Necrosis Factor-α in the Brain. J. Neuroimmune Pharmacol. 2007;2:140–153. doi: 10.1007/s11481-007-9070-6. PubMed DOI

Willemssen R, Falkenstein M, Schwarz M, Müller T, Beste C. Effects of aging, Parkinson’s disease, and dopaminergic medication on response selection and control. Neurobiol. Aging. 2011;32:327–335. doi: 10.1016/j.neurobiolaging.2009.02.002. PubMed DOI

Beste C, Saft C, Andrich J, Gold R, Falkenstein M. Stimulus-response compatibility in Huntington’s disease: a cognitive-neurophysiological analysis. J. Neurophysiol. 2008;99:1213–1223. doi: 10.1152/jn.01152.2007. PubMed DOI

Beste C, et al. Levels of error processing in Huntington’s disease: a combined study using event-related potentials and voxel-based morphometry. Hum. Brain Mapp. 2008;29:121–130. doi: 10.1002/hbm.20374. PubMed DOI PMC

Beste C, et al. Mechanisms mediating parallel action monitoring in fronto-striatal circuits. NeuroImage. 2012;62:137–146. doi: 10.1016/j.neuroimage.2012.05.019. PubMed DOI

Van Assche G, et al. The second European evidence-based Consensus on the diagnosis and management of Crohn’s disease: Definitions and diagnosis. J. Crohns Colitis. 2010;4:7–27. doi: 10.1016/j.crohns.2009.12.003. PubMed DOI

Van Assche G, et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 3: special situations. J. Crohns Colitis. 2013;7:1–33. doi: 10.1016/j.crohns.2012.09.005. PubMed DOI

Ward M, Mock, An E. inventory for measuring depression. Arch. Gen. Psychiatry. 1961;4:561–571. doi: 10.1001/archpsyc.1961.01710120031004. PubMed DOI

Penner IK, et al. The Fatigue Scale for Motor and Cognitive Functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue. Mult. Scler. Houndmills Basingstoke Engl. 2009;15:1509–1517. doi: 10.1177/1352458509348519. PubMed DOI

Lehrl, S. Mehrfachwahl-Wortschatz-Intelligenztest: MWT-B. Spitta, (1999).

Nunez PL, Pilgreen KL, Westdorp AF, Law SK, Nelson AV. A Visual study of surface potentials and Laplacians due to distributed neocortical sources: Computer simulations and evoked potentials. Brain Topogr. 1991;4:151–168. doi: 10.1007/BF01132772. PubMed DOI

Dippel G, Beste C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 2015;6:6587. doi: 10.1038/ncomms7587. PubMed DOI

Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 2002;24(Suppl D):5–12. PubMed

Sekihara K, Sahani M, Nagarajan SS. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage. 2005;25:1056–1067. doi: 10.1016/j.neuroimage.2004.11.051. PubMed DOI PMC

Mazziotta J, et al. A probabilistic atlas and reference system for the human brain: International Consortium forBrain Mapping (ICBM) Philos. Trans. R. Soc. Lond. Ser. B. 2001;356:1293–1322. doi: 10.1098/rstb.2001.0915. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...