Specific neurophysiological mechanisms underlie cognitive inflexibility in inflammatory bowel disease
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29066846
PubMed Central
PMC5655331
DOI
10.1038/s41598-017-14345-5
PII: 10.1038/s41598-017-14345-5
Knihovny.cz E-zdroje
- MeSH
- analýza rozptylu MeSH
- dospělí MeSH
- evokované potenciály MeSH
- idiopatické střevní záněty metabolismus patofyziologie psychologie MeSH
- kognice * MeSH
- lidé MeSH
- mladý dospělý MeSH
- neurofyziologie * MeSH
- pozornost MeSH
- reakční čas MeSH
- TNF-alfa metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- TNF-alfa MeSH
Inflammatory bowel disease (IBD) is highly prevalent. While the pathophysiological mechanisms of IBD are increasingly understood, there is a lack of knowledge concerning cognitive dysfunctions in IBD. This is all the more the case concerning the underlying neurophysiological mechanisms. In the current study we focus on possible dysfunctions of cognitive flexibility (task switching) processes in IBD patients using a system neurophysiological approach combining event-related potential (ERP) recordings with source localization analyses. We show that there are task switching deficits (i.e. increased switch costs) in IBD patients. The neurophysiological data show that even though the pathophysiology of IBD is diverse and wide-spread, only specific cognitive subprocesses are altered: There was a selective dysfunction at the response selection level (N2 ERP) associated with functional alterations in the anterior cingulate cortex and the right inferior frontal gyrus. Attentional selection processes (N1 ERP), perceptual categorization processes (P1 ERP), or mechanisms related to the flexible implementation of task sets and related working memory processes (P3 ERP) do not contribute to cognitive inflexibility in IBD patients and were unchanged. It seems that pathophysiological processes in IBD strongly compromise cognitive-neurophysiological subprocesses related to fronto-striatal networks. These circuits may become overstrained in IBD when cognitive flexibility is required.
Zobrazit více v PubMed
Abraham C, Cho J. Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflamm. Bowel Dis. 2009;15:1090–1100. doi: 10.1002/ibd.20894. PubMed DOI
Abraham C, Cho JH. IL-23 and Autoimmunity: New Insights into the Pathogenesis of Inflammatory Bowel Disease. Annu. Rev. Med. 2009;60:97–110. doi: 10.1146/annurev.med.60.051407.123757. PubMed DOI
Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 2008;8:458–466. doi: 10.1038/nri2340. PubMed DOI
Gareau, M. G. in Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease (eds Lyte, M. & Cryan, J. F.) 357–371 (Springer New York, 2014).
Diamond A. Executive Functions. Annu. Rev. Psychol. 2013;64:135–168. doi: 10.1146/annurev-psych-113011-143750. PubMed DOI PMC
Chmielewski WX, Mückschel M, Stock A-K, Beste C. The impact of mental workload on inhibitory control subprocesses. NeuroImage. 2015;112:96–104. doi: 10.1016/j.neuroimage.2015.02.060. PubMed DOI
Beste C, et al. Double dissociated effects of the functional TNF-α −308G/A polymorphism on processes of cognitive control. Neuropsychologia. 2011;49:196–202. doi: 10.1016/j.neuropsychologia.2010.11.037. PubMed DOI
Beste C, Baune BT, Falkenstein M, Konrad C. Variations in the TNF-α gene (TNF-α −308G → A) affect attention and action selection mechanisms in a dissociated fashion. J. Neurophysiol. 2010;104:2523–2531. doi: 10.1152/jn.00561.2010. PubMed DOI
Chudasama Y, Robbins TW. Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol. Psychol. 2006;73:19–38. doi: 10.1016/j.biopsycho.2006.01.005. PubMed DOI
Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C. The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol. Aging. 2011;32:2327.e7–2327.e19. doi: 10.1016/j.neurobiolaging.2011.06.010. PubMed DOI
McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J. Neuroinflammation. 2008;5:45. doi: 10.1186/1742-2094-5-45. PubMed DOI PMC
Sriram K, Miller DB, O’Callaghan JP. Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J. Neurochem. 2006;96:706–718. doi: 10.1111/j.1471-4159.2005.03566.x. PubMed DOI
Sriram K, et al. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2002;16:1474–1476. PubMed
Teismann P, Schwaninger M, Weih F, Ferger B. Nuclear factor-kappaB activation is not involved in a MPTP model of Parkinson’s disease. Neuroreport. 2001;12:1049–1053. doi: 10.1097/00001756-200104170-00037. PubMed DOI
Choy, M. C., Visvanathan, K. & De Cruz, P. An Overview of the Innate and Adaptive Immune System in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 10.1097/MIB.0000000000000955 (2016). PubMed
Kent S, Bret-Dibat JL, Kelley KW, Dantzer R. Mechanisms of sickness-induced decreases in food-motivated behavior. Neurosci. Biobehav. Rev. 1996;20:171–175. doi: 10.1016/0149-7634(95)00037-F. PubMed DOI
Nyuyki KD, Pittman QJ. Toward a better understanding of the central consequences of intestinal inflammation. Ann. N. Y. Acad. Sci. 2015;1351:149–154. doi: 10.1111/nyas.12935. PubMed DOI
Monsell S. Task switching. Trends Cogn. Sci. 2003;7:134–140. doi: 10.1016/S1364-6613(03)00028-7. PubMed DOI
Gajewski PD, Kleinsorge T, Falkenstein M. Electrophysiological correlates of residual switch costs. Cortex. 2010;46:1138–1148. doi: 10.1016/j.cortex.2009.07.014. PubMed DOI
Gehring WJ, Bryck RL, Jonides J, Albin RL, Badre D. The mind’s eye, looking inward? In search of executive control in internal attention shifting. Psychophysiology. 2003;40:572–585. doi: 10.1111/1469-8986.00059. PubMed DOI
Karayanidis F, Coltheart M, Michie PT, Murphy K. Electrophysiological correlates of anticipatory and poststimulus components of task switching. Psychophysiology. 2003;40:329–348. doi: 10.1111/1469-8986.00037. PubMed DOI
Barceló F, Muñoz-Céspedes JM, Pozo MA, Rubia FJ. Attentional set shifting modulates the target P3b response in the Wisconsin card sorting test. Neuropsychologia. 2000;38:1342–1355. doi: 10.1016/S0028-3932(00)00046-4. PubMed DOI
Jamadar S, Hughes M, Fulham WR, Michie PT, Karayanidis F. The spatial and temporal dynamics of anticipatory preparation and response inhibition in task-switching. NeuroImage. 2010;51:432–449. doi: 10.1016/j.neuroimage.2010.01.090. PubMed DOI
Jost K, Mayr U, Rösler F. Is task switching nothing but cue priming? Evidence from ERPs. Cogn. Affect. Behav. Neurosci. 2008;8:74–84. doi: 10.3758/CABN.8.1.74. PubMed DOI
Kieffaber PD, Hetrick WP. Event-related potential correlates of task switching and switch costs. Psychophysiology. 2005;42:56–71. doi: 10.1111/j.1469-8986.2005.00262.x. PubMed DOI
Lorist MM, et al. Mental fatigue and task control: planning and preparation. Psychophysiology. 2000;37:614–625. doi: 10.1111/1469-8986.3750614. PubMed DOI
Poulsen C, Luu P, Davey C, Tucker DM. Dynamics of task sets: evidence from dense-array event-related potentials. Brain Res. Cogn. Brain Res. 2005;24:133–154. doi: 10.1016/j.cogbrainres.2005.01.008. PubMed DOI
Beste C, Kneiphof J, Woitalla D. Effects of fatigue on cognitive control in neurosarcoidosis. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2015;25:522–530. doi: 10.1016/j.euroneuro.2015.01.012. PubMed DOI
Wolff N, Roessner V, Beste C. Behavioral and neurophysiological evidence for increased cognitive flexibility in late childhood. Sci. Rep. 2016;6:28954. doi: 10.1038/srep28954. PubMed DOI PMC
Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C. The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol. Aging. 2011;32:2327.e7–19. doi: 10.1016/j.neurobiolaging.2011.06.010. PubMed DOI
Herrmann CS, Knight RT. Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Biobehav. Rev. 2001;25:465–476. doi: 10.1016/S0149-7634(01)00027-6. PubMed DOI
Beste C, Heil M, Domschke K, Baune BT, Konrad C. Associations between the tumor necrosis factor alpha gene (−308G → A) and event-related potential indices of attention and mental rotation. Neuroscience. 2010;170:742–748. doi: 10.1016/j.neuroscience.2010.07.058. PubMed DOI
Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C. The functional tumor necrosis factor-α (308A/G) polymorphism modulates attentional selection in elderly individuals. Neurobiol. Aging. 2013;34:2694.e1–2694.e12. doi: 10.1016/j.neurobiolaging.2013.04.017. PubMed DOI
Wagenmakers E-J. A practical solution to the pervasive problems ofp values. Psychon. Bull. Rev. 2007;14:779–804. doi: 10.3758/BF03194105. PubMed DOI
Masson MEJ. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav. Res. Methods. 2011;43:679–690. doi: 10.3758/s13428-010-0049-5. PubMed DOI
Raftery AE. Bayesian Model Selection inSocial Research. Sociol. Methodol. 1995;25:111–163. doi: 10.2307/271063. DOI
Rigoli L, Caruso RA. Inflammatory bowel disease in pediatric and adolescent patients: a biomolecular and histopathological review. World J. Gastroenterol. 2014;20:10262–10278. doi: 10.3748/wjg.v20.i30.10262. PubMed DOI PMC
Cosnes J, Gower–Rousseau C, Seksik P, Cortot A. Epidemiology and Natural History of Inflammatory Bowel Diseases. Gastroenterology. 2011;140:1785–1794.e4. doi: 10.1053/j.gastro.2011.01.055. PubMed DOI
Talley, N. J. et al. An evidence-based systematic review on medical therapies for inflammatory bowel disease. Am. J. Gastroenterol. 106Suppl 1, S2–25; quizS26 (2011). PubMed
Attree EA, Dancey CP, Keeling D, Wilson C. Cognitive Function in People With Chronic Illness: Inflammatory Bowel Disease and Irritable Bowel Syndrome. Appl. Neuropsychol. 2003;10:96–104. doi: 10.1207/S15324826AN1002_05. PubMed DOI
Dancey CP, Attree EA, Stuart G, Wilson C. & Sonnet, A. Words fail me: The verbal IQ deficit in inflammatory bowel disease and irritable bowel syndrome. Inflamm. Bowel Dis. 2009;15:852–857. doi: 10.1002/ibd.20837. PubMed DOI
Allport, A. & Wylie, G. in Control of cognitive processes: Attention and performanceXVIII, 35–70 (2000).
Kiesel A, et al. Control and interference in task switching—A review. Psychol. Bull. 2010;136:849–874. doi: 10.1037/a0019842. PubMed DOI
Wascher E, Beste C. Tuning Perceptual Competition. J. Neurophysiol. 2010;103:1057–1065. doi: 10.1152/jn.00376.2009. PubMed DOI
Klimesch W. Evoked alpha and early access to the knowledge system: The P1 inhibition timing hypothesis. Brain Res. 2011;1408:52–71. doi: 10.1016/j.brainres.2011.06.003. PubMed DOI PMC
Petruo VA, Stock A-K, Münchau A, Beste C. A systems neurophysiology approach to voluntary event coding. NeuroImage. 2016;135:324–332. doi: 10.1016/j.neuroimage.2016.05.007. PubMed DOI
Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology. 2008;45:152–170. doi: 10.1111/j.1469-8986.2007.00628.x. PubMed DOI PMC
Swainson R, et al. Cognitive Control Mechanisms Revealed by ERP and fMRI: Evidence from Repeated Task-Switching. J. Cogn. Neurosci. 2003;15:785–799. doi: 10.1162/089892903322370717. PubMed DOI
Swainson R, Jackson SR, Jackson GM. Using advance information in dynamic cognitive control: An ERP study of task-switching. Brain Res. 2006;1105:61–72. doi: 10.1016/j.brainres.2006.02.027. PubMed DOI
Nicholson R, Karayanidis F, Davies A, Michie PT. Components of task-set reconfiguration: Differential effects of ‘switch-to’ and ‘switch-away’ cues. Brain Res. 2006;1121:160–176. doi: 10.1016/j.brainres.2006.08.101. PubMed DOI
Zhang R, Stock A-K, Fischer R, Beste C. The system neurophysiological basis of backward inhibition. Brain Struct. Funct. 2016;221:4575–4587. doi: 10.1007/s00429-016-1186-0. PubMed DOI
Zhang, R., Stock, A.-K. & Beste, C. The neurophysiological basis of reward effects on backward inhibition processes. NeuroImage10.1016/j.neuroimage.2016.05.080(2016). PubMed
Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 2014;18:177–185. doi: 10.1016/j.tics.2013.12.003. PubMed DOI
Bokemeyer B. CED-Behandlung in Deutschland. Gastroenterol. 2007;2:447–455. doi: 10.1007/s11377-007-0113-6. DOI
Bokemeyer B, et al. Clinical status, psychosocial impairments, medical treatment and health care costs for patients with inflammatory bowel disease (IBD) in Germany: An online IBD registry. J. Crohns Colitis. 2013;7:355–368. doi: 10.1016/j.crohns.2012.02.014. PubMed DOI
McAfoose J, Baune BT. Evidence for a cytokine model of cognitive function. Neurosci. Biobehav. Rev. 2009;33:355–366. doi: 10.1016/j.neubiorev.2008.10.005. PubMed DOI
Sriram K, O’Callaghan JP. Divergent Roles for Tumor Necrosis Factor-α in the Brain. J. Neuroimmune Pharmacol. 2007;2:140–153. doi: 10.1007/s11481-007-9070-6. PubMed DOI
Willemssen R, Falkenstein M, Schwarz M, Müller T, Beste C. Effects of aging, Parkinson’s disease, and dopaminergic medication on response selection and control. Neurobiol. Aging. 2011;32:327–335. doi: 10.1016/j.neurobiolaging.2009.02.002. PubMed DOI
Beste C, Saft C, Andrich J, Gold R, Falkenstein M. Stimulus-response compatibility in Huntington’s disease: a cognitive-neurophysiological analysis. J. Neurophysiol. 2008;99:1213–1223. doi: 10.1152/jn.01152.2007. PubMed DOI
Beste C, et al. Levels of error processing in Huntington’s disease: a combined study using event-related potentials and voxel-based morphometry. Hum. Brain Mapp. 2008;29:121–130. doi: 10.1002/hbm.20374. PubMed DOI PMC
Beste C, et al. Mechanisms mediating parallel action monitoring in fronto-striatal circuits. NeuroImage. 2012;62:137–146. doi: 10.1016/j.neuroimage.2012.05.019. PubMed DOI
Van Assche G, et al. The second European evidence-based Consensus on the diagnosis and management of Crohn’s disease: Definitions and diagnosis. J. Crohns Colitis. 2010;4:7–27. doi: 10.1016/j.crohns.2009.12.003. PubMed DOI
Van Assche G, et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 3: special situations. J. Crohns Colitis. 2013;7:1–33. doi: 10.1016/j.crohns.2012.09.005. PubMed DOI
Ward M, Mock, An E. inventory for measuring depression. Arch. Gen. Psychiatry. 1961;4:561–571. doi: 10.1001/archpsyc.1961.01710120031004. PubMed DOI
Penner IK, et al. The Fatigue Scale for Motor and Cognitive Functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue. Mult. Scler. Houndmills Basingstoke Engl. 2009;15:1509–1517. doi: 10.1177/1352458509348519. PubMed DOI
Lehrl, S. Mehrfachwahl-Wortschatz-Intelligenztest: MWT-B. Spitta, (1999).
Nunez PL, Pilgreen KL, Westdorp AF, Law SK, Nelson AV. A Visual study of surface potentials and Laplacians due to distributed neocortical sources: Computer simulations and evoked potentials. Brain Topogr. 1991;4:151–168. doi: 10.1007/BF01132772. PubMed DOI
Dippel G, Beste C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 2015;6:6587. doi: 10.1038/ncomms7587. PubMed DOI
Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 2002;24(Suppl D):5–12. PubMed
Sekihara K, Sahani M, Nagarajan SS. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage. 2005;25:1056–1067. doi: 10.1016/j.neuroimage.2004.11.051. PubMed DOI PMC
Mazziotta J, et al. A probabilistic atlas and reference system for the human brain: International Consortium forBrain Mapping (ICBM) Philos. Trans. R. Soc. Lond. Ser. B. 2001;356:1293–1322. doi: 10.1098/rstb.2001.0915. PubMed DOI PMC