Osteogenic Potential of Caspases Related to Endochondral Ossification
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29091523
PubMed Central
PMC5761947
DOI
10.1369/0022155417739283
Knihovny.cz E-resources
- Keywords
- PCR Array analysis, caspases, endochondral ossification, growth plate, immunohistochemistry, micromass cultures,
- MeSH
- CD36 Antigens analysis genetics MeSH
- Immunohistochemistry MeSH
- Caspase Inhibitors pharmacology MeSH
- Caspases metabolism MeSH
- Cells, Cultured MeSH
- Mice MeSH
- Organ Culture Techniques MeSH
- Osteogenesis * drug effects MeSH
- Forelimb growth & development metabolism MeSH
- Gene Expression Regulation, Developmental drug effects MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CD36 Antigens MeSH
- Caspase Inhibitors MeSH
- Caspases MeSH
Caspases have functions particularly in apoptosis and inflammation. Increasing evidence indicates novel roles of these proteases in cell differentiation, including those involved in osteogenesis. This investigation provides a complex screening of osteogenic markers affected by pan caspase inhibition in micromass cultures derived from mouse forelimbs. PCR Array analysis showed significant alterations in expression of 49 osteogenic genes after 7 days of inhibition. The largest change was a decrease in CD36 expression, which was confirmed at organ level by caspase inhibition in cultured mouse ulnae followed by CD36 immunohistochemical analysis. So far, available data point to osteogenic potential of pro-apoptotic caspases. Therefore, the expression of pro-apoptotic caspases (-3, -6, -7, -8, -9) within the growth plate of mouse forelimbs at the stage where the individual zones are clearly apparent was studied. Caspase-9 was reported in the growth plate for the first time as well as caspase-6 and -7 in the resting zone, caspase-7 in the proliferation, and caspase-6 and -8 in the ossification zone. For all caspases, there was a gradient increase in activation toward the ossification zone. The distribution of staining varied significantly from that of apoptotic cells, and thus, the results further support non-apoptotic participation of caspases in osteogenesis.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Physiology University of Veterinary and Pharmaceutical Sciences Brno Czech Republic
Institute of Animal Physiology and Genetics CAS v v i Brno Czech Republic
See more in PubMed
Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P. Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 2007;14(1):44–55. doi:10.1038/sj.cdd.4402047. PubMed DOI
Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Non-apoptotic functions of apoptosis-regulatory proteins. EMBO Rep. 2012;13(4):322–30. doi:10.1038/embor.2012.19. PubMed DOI PMC
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22(4):526–39. doi:10.1038/cdd.2014.216. PubMed DOI PMC
Mogi M, Togari A. Activation of caspase is required for osteoblastic differentiation. J Biol Chem. 2003;278(48):47477–82. doi:10.1074/jbc.M307055200. PubMed DOI
Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, Lakhani S, Favell RA, Feng XH, Robey PG, Young M, Shi S. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest. 2004;114(12):1704–13. doi:10.1172/JCI20427. PubMed DOI PMC
Szymczyk KH, Freeman TA, Adams CS, Srinivas V, Steinbeck MJ. Active caspase-3 is required for osteoclast differentiation. J Cell Physiol. 2006;209(3):836–44. doi:10.1002/jcp.20770. PubMed DOI
Svandova E, Lesot H, Vanden Berghe T, Tucker AS, Sharpe PT, Vandenabeele P, Matalová E. Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis. 2014;5:e1366. doi:10.1038/cddis.2014.330. PubMed DOI PMC
Adamova E, Janečková E, Kleparnik K, Matalová E. Caspases and osteogenic markers—in vitro screening of inhibition impact. In Vitro Cell Dev Biol Anim. 2016;52(2):144–8. doi:10.1007/s11626-015-9964-1. PubMed DOI
Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun. 2005;328(3):658–65. doi:10.1016/j.bbrc.2004.11.068. PubMed DOI
Jing Y, Hinton RJ, Chan KS, Feng JQ. Co-localization of cell lineage markers and the tomato signal. J Vis Exp. 2016;118:e54982. doi:10.3791/54982. PubMed DOI PMC
White A, Wallis G. Endochondral ossification: a delicate balance between growth and mineralisation. Curr Biol. 2001;11(15):R589–91. doi:10.1016/S0960-9822(01)00359-1. PubMed DOI
Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46–62. doi:10.1016/j.biocel.2007.06.009. PubMed DOI
Hock JM, Krishnan V, Onyia JE, Bidwell JP, Milas J, Stanislaus D. Osteoblast apoptosis and bone turnover. J Bone Miner Res. 2001;16(6):975–84. doi:10.1359/jbmr.2001.16.6.975. PubMed DOI
Adams CS, Shapiro IM. The fate of the terminally differentiated chondrocyte: evidence for microenvironmental regulation of chondrocyte apoptosis. Crit Rev Oral Biol Med. 2002;13(6):465–73. PubMed
Mello MA, Tuan RS. High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. In Vitro Cell Dev Biol Anim. 1999;35(5):262–9. doi:10.1007/s11626-999-0070-0. PubMed DOI
Chlastakova I, Liskova M, Kudelova J, Dubska L, Kleparnik K, Matalová E. Dynamics of caspase-3 activation and inhibition in embryonic micromasses evaluated by a photon-counting chemiluminescence approach. In Vitro Cell Dev Biol Anim. 2012;48(9):545–9. doi:10.1007/s11626-012-9542-8. PubMed DOI
Cho JH, Lee PY, Son WC, Chi SW, Park BC, Kim JH, Park SG. Identification of the novel substrates for caspase-6 in apoptosis using proteomic approaches. BMB Rep. 2013;46(12):588–93. doi:10.5483/BMBRep.2013.46.12.081. PubMed DOI PMC
Zuzarte-Luis V, Berciano MT, Lafarga M, Hurle JM. Caspase redundancy and release of mitochondrial apoptotic factors characterize interdigital apoptosis. Apoptosis. 2006;11(5):701–15. doi:10.1007/s10495-006-5481-8. PubMed DOI
Svandova E, Vesela B, Lesot H, Poliard A, Matalová E. Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination. Histochem Cell Biol. 2017;147(4):497–510. doi:10.1007/s00418-016-1508-6. PubMed DOI
Cecil DL, Appleton CT, Polewski MD, Mort JS, Schmidt AM, Bendele A, Beier F, Terkeltaub R. The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli. J Immunol. 2009;182(8):5024–31. doi:10.4049/jimmunol.0803603. PubMed DOI PMC
De Valck D, Luyten FP. Caspase inhibition supports proper gene expression in ex vivo mouse limb cultures. Cell Death Differ. 2001;8(10):985–94. doi:10.1038/sj.cdd.4400912. PubMed DOI
Nutall ME, Nadeau DP, Fisher PW, Wang F, Keller PM, DeWolf WE, Jr, Goldring MB, Badger AM, Lee D, Levy MA, Gowen M, Lark MW. Inhibition of caspase-3-like activity prevents apoptosis while retaining functionality of human chondrocytes in vitro. J Orthop Res. 2000;18(3):356–63. doi:10.1002/jor.1100180306. PubMed DOI
Gibson G, Lin DL, Wang X, Zhang L. The release and activation of transforming growth factor β2 associated with apoptosis of chick hypertrophic chondrocytes. J Bone Miner Res. 2001;16(12):2330–8. doi:10.1359/jbmr.2001.16.12.2330. PubMed DOI
Tandon NN, Kralisz U, Jamieson GA. Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion. J Biol Chem. 1989;264(13):7576–83. PubMed
Mercier N, Catimel B, Reck MP, Pellecchia D, McGregor JL. Identification of a functional site on CD36 involved in the interaction between platelets and collagen. Platelets. 1995;6(3):139–45. doi:10.3109/09537109509013266. PubMed DOI
Silverstein RL, Baird M, Lo SK, Yesner LM. Sense and antisense cDNA transfection of CD36 (glycoprotein IV) in melanoma cells. J Biol Chem. 1992;267(23):16607–12. PubMed
Nicholson AC, Febbraio M, Han J, Silverstein RL, Hajjar DP. CD36 in atherosclerosis. The role of a class B macrophage scavenger receptor. Ann N Y Acad Sci. 2000;902:128–33. doi:10.1111/j.1749-6632.2001.tb03944.x. PubMed DOI
Huang MM, Bolen JB, Barnwell JW, Shattil SJ, Brugge JS. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci U S A. 1991;88(17):7844–8. doi:10.1073/pnas.88.17.7844. PubMed DOI PMC
Carron JA, Wagstaff SC, Gallagher JA, Bowler WB. A CD36-binding peptide from trombospondin-1 can stimulate resorption by osteoclasts in vitro. Biochem Biophys Res Commun. 2000;270(3):1124–7. doi:10.1006/bbrc.2000.2574. PubMed DOI
Kevorkova O, Martineau C, Martin-Falstrault L, Sanchez-Dardon J, Brissette L, Moreau R. Low-bone-mass phenotype of deficient mice for the cluster of differentiation 36 (CD36). PLoS ONE. 2013;8(10):e77701. doi:10.1371/journal.pone.0077701. PubMed DOI PMC
Staines KA, Zhu D, Farquharson C, MacRae VE. Identification of novel regulators of osteoblast matrix mineralization by time series transcriptional profiling. J Bone Miner Metab. 2014;32(3):240–51. doi:10.1007/s00774-013-0493-2. PubMed DOI
Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol. 2004;14(2):86–93. doi:10.1016/j.tcb.2003.12.003. PubMed DOI PMC
Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol. 2000;151(4):879–89. doi:10.1083/jcb.151.4.879. PubMed DOI PMC
Littlewood-Evans A, Kokubo T, Ishibashi O, Inaoka T, Wlodarski B, Gallegher JA. Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone. 1997;20(2):81–6. doi:10.1016/S8756-3282(96)00351-1. PubMed DOI
Loeser RF. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol. 2014;39:11–6. doi:10.1016/j.matbio.2014.08.007. PubMed DOI PMC
Kamiya N, Mishina Y. New insights on the roles of BMP signaling in bone—a review of recent mouse genetic studies. Biofactors. 2011;37(2):75–82. doi:10.1002/biof.139. PubMed DOI PMC
Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, Pratt A, Haydon RC, Luu HH, Angeles J, Shi LL, He TC. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 2013;6(8A):32–52. doi:10.4236/jbise.2013.68A1004. PubMed DOI PMC
Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22(4):233–41. doi:10.1080/08977190412331279890. PubMed DOI
Golub EE, Boesze-Battaglia K. The role of alkaline phosphatase in mineralization. Curr Opin Orthop. 2007;18:444–8. doi:10.1097/BCO.0b013e3282630851. DOI
Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76. doi:10.1093/emboj/cdg599. PubMed DOI PMC
Sutherland MK, Geoghegan JC, Yu C, Tucott E, Skonier JE, Winkler DG, Latham JA. Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone. 2004;35(4):828–35. doi:10.1016/j.bone.2004.05.023. PubMed DOI
Gelse K, Poschl E, Aigner T. Collagens—structure, function and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):1531–46. doi:10.1016/j.addr.2003.08.002. PubMed DOI
Ulsamer A, Ortuno MJ, Ruiz S, Susperregui AR, Osses N, Rosa JL, Ventura F. BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem. 2008;283(7):3816–26. doi:10.1074/jbc.M704724200. PubMed DOI
Matalová E, Lesot H, Svandova E, Vanden Berghe T, Sharpe PT, Healy C, Vandenabeele P, Tucker AS. Caspase-7 participates in differentiation of cells forming dental hard tissues. Dev Growth Differ. 2013;55(5):615–21. doi:10.1111/dgd.12066. PubMed DOI
Pucci B, Adams CS, Fertala J, Snyder BC, Mansfield KD, Tafani M, Freeman T, Shapiro IM. Development of the terminally differentiated state sensitizes epiphyseal chondrocytes to apoptosis through caspase-3 activation. J Cell Physiol. 2007;210(3):609–5. doi:10.1002/jcp.20857. PubMed DOI
Blumer MJ, Longato S, Schwarzer C, Fritsch H. Bone development in the femoral epiphysis of mice: the role of cartilage canals and the fate of resting chondrocytes. Dev Dyn. 2007;236(8):2077–88. doi:10.1002/dvdy.21228. PubMed DOI
Chrysis D, Nilsson O, Ritzen EM, Savendahl L. Apoptosis is developmentally regulated in rat growth plate. Endocrine. 2002;18(3):271–8. doi:10.1385/ENDO:18:3:271. PubMed DOI
Krajewska M, Wang HG, Krajewski S, Zapata JM, Shabaik A, Gascoyne R, Reed JC. Immunohistochemical analysis of in vivo patterns of expression of CPP32 (Caspase-3), a cell death protease. Cancer Res. 1997;57(8):1605–13. PubMed
Trieb K, Cetin E, Girsch W, Brand G. Distinct expression of Apo-1 and caspase-8 in human growth plate. Eur Cell Mat. 2003;5(2):57–8. PubMed
Roach HI, Erenpreisa J, Aigner T. Osteogenic differentiation of hypertrophic chondrocytes involves asymmetric cell divisions and apoptosis. J Cell Biol. 1995;131(2):483–94. PubMed PMC
Zenmyo M, Komiya S, Kawabata R, Sasaguri Y, Inoue A, Morimatsu M. Morphological and biochemical evidence for apoptosis in the terminal hypertrophic chondrocytes of the growth plate. J Pathol. 1996;180(4):430–3. doi:10.1002/(SICI)1096-9896(199612)180:4<430::AID-PATH691>3.0.CO;2-H. PubMed DOI
Salmena L, Lemmers B, Hakem A, Matysiak-Zablocki E, Murakami K, Au PY, Berry DM, Tamblyn L, Shehabeldin A, Migon E, Wakeham A, Bouchard D, Yeh WC, McGlade JC, Ohashi PS, Hakem R. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev. 2003;17(7):883–95. doi:10.1101/gad.1063703. PubMed DOI PMC
De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, Kroemer G, Vainchenker W, Debili N. Platelet formation is the consequence of caspase activation within megakaryotes. Blood. 2002;100(4):1310–7. doi:10.1182/blood-2002-03-0686. PubMed DOI
Sadowski-Debbing K, Coy JF, Mier W, Hug H, Los M. Caspases—their role in apoptosis and other physiological processes as revealed by knock-out studies. Arch Immunol Ther Exp (Warsz). 2002;50(1):19–34. PubMed
Larsen BD, Rampalli S, Burns LE, Brunette S, Dilworth FJ, Megeney LA. Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc Natl Acad Sci U S A. 2010;107(9):4230–5. doi:10.1073/pnas.0913089107. PubMed DOI PMC
Basu S, Rajakaruna S, Menko AS. Insulin-like growth factor receptor-1 and nuclear factor κB are crucial survival signals that regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem. 2012;287(11):8384–97. doi:10.1074/jbc.M112.341586. PubMed DOI PMC
Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, Varet B, Solary E, Hermine O. Caspase activation is required for terminal erythroid differentiation. J Exp Med. 2001;193(2):247–54. doi:10.1084/jem.193.2.247. PubMed DOI PMC
Sordet O, Rebe C, Plenchette S, Zermati Y, Hermine O, Vainchenker W, Garrido C, Solary E, Dubrez-Daloz L. Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood. 2002;100(13):4446–53. doi:10.1182/blood-2002-06-1778. PubMed DOI
Nhan TQ, Liles WC, Schwartz SM. Physiological functions of caspases beyond cell death. Am J Pathol. 2006;169(3):729–37. doi:10.2353/ajpath.2006.060105. PubMed DOI PMC
Abraham MC, Shaham S. Death without caspases, caspases without death. Trends Cell Biol. 2004;14(4):184–93. doi:10.1016/j.tcb.2004.03.002. PubMed DOI
Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics
Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis
Caspase Inhibition Affects the Expression of Autophagy-Related Molecules in Chondrocytes