• This record comes from PubMed

Osteogenic Potential of Caspases Related to Endochondral Ossification

. 2018 Jan ; 66 (1) : 47-58. [epub] 20171101

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Caspases have functions particularly in apoptosis and inflammation. Increasing evidence indicates novel roles of these proteases in cell differentiation, including those involved in osteogenesis. This investigation provides a complex screening of osteogenic markers affected by pan caspase inhibition in micromass cultures derived from mouse forelimbs. PCR Array analysis showed significant alterations in expression of 49 osteogenic genes after 7 days of inhibition. The largest change was a decrease in CD36 expression, which was confirmed at organ level by caspase inhibition in cultured mouse ulnae followed by CD36 immunohistochemical analysis. So far, available data point to osteogenic potential of pro-apoptotic caspases. Therefore, the expression of pro-apoptotic caspases (-3, -6, -7, -8, -9) within the growth plate of mouse forelimbs at the stage where the individual zones are clearly apparent was studied. Caspase-9 was reported in the growth plate for the first time as well as caspase-6 and -7 in the resting zone, caspase-7 in the proliferation, and caspase-6 and -8 in the ossification zone. For all caspases, there was a gradient increase in activation toward the ossification zone. The distribution of staining varied significantly from that of apoptotic cells, and thus, the results further support non-apoptotic participation of caspases in osteogenesis.

See more in PubMed

Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P. Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 2007;14(1):44–55. doi:10.1038/sj.cdd.4402047. PubMed DOI

Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Non-apoptotic functions of apoptosis-regulatory proteins. EMBO Rep. 2012;13(4):322–30. doi:10.1038/embor.2012.19. PubMed DOI PMC

Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22(4):526–39. doi:10.1038/cdd.2014.216. PubMed DOI PMC

Mogi M, Togari A. Activation of caspase is required for osteoblastic differentiation. J Biol Chem. 2003;278(48):47477–82. doi:10.1074/jbc.M307055200. PubMed DOI

Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, Lakhani S, Favell RA, Feng XH, Robey PG, Young M, Shi S. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest. 2004;114(12):1704–13. doi:10.1172/JCI20427. PubMed DOI PMC

Szymczyk KH, Freeman TA, Adams CS, Srinivas V, Steinbeck MJ. Active caspase-3 is required for osteoclast differentiation. J Cell Physiol. 2006;209(3):836–44. doi:10.1002/jcp.20770. PubMed DOI

Svandova E, Lesot H, Vanden Berghe T, Tucker AS, Sharpe PT, Vandenabeele P, Matalová E. Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis. 2014;5:e1366. doi:10.1038/cddis.2014.330. PubMed DOI PMC

Adamova E, Janečková E, Kleparnik K, Matalová E. Caspases and osteogenic markers—in vitro screening of inhibition impact. In Vitro Cell Dev Biol Anim. 2016;52(2):144–8. doi:10.1007/s11626-015-9964-1. PubMed DOI

Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun. 2005;328(3):658–65. doi:10.1016/j.bbrc.2004.11.068. PubMed DOI

Jing Y, Hinton RJ, Chan KS, Feng JQ. Co-localization of cell lineage markers and the tomato signal. J Vis Exp. 2016;118:e54982. doi:10.3791/54982. PubMed DOI PMC

White A, Wallis G. Endochondral ossification: a delicate balance between growth and mineralisation. Curr Biol. 2001;11(15):R589–91. doi:10.1016/S0960-9822(01)00359-1. PubMed DOI

Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46–62. doi:10.1016/j.biocel.2007.06.009. PubMed DOI

Hock JM, Krishnan V, Onyia JE, Bidwell JP, Milas J, Stanislaus D. Osteoblast apoptosis and bone turnover. J Bone Miner Res. 2001;16(6):975–84. doi:10.1359/jbmr.2001.16.6.975. PubMed DOI

Adams CS, Shapiro IM. The fate of the terminally differentiated chondrocyte: evidence for microenvironmental regulation of chondrocyte apoptosis. Crit Rev Oral Biol Med. 2002;13(6):465–73. PubMed

Mello MA, Tuan RS. High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. In Vitro Cell Dev Biol Anim. 1999;35(5):262–9. doi:10.1007/s11626-999-0070-0. PubMed DOI

Chlastakova I, Liskova M, Kudelova J, Dubska L, Kleparnik K, Matalová E. Dynamics of caspase-3 activation and inhibition in embryonic micromasses evaluated by a photon-counting chemiluminescence approach. In Vitro Cell Dev Biol Anim. 2012;48(9):545–9. doi:10.1007/s11626-012-9542-8. PubMed DOI

Cho JH, Lee PY, Son WC, Chi SW, Park BC, Kim JH, Park SG. Identification of the novel substrates for caspase-6 in apoptosis using proteomic approaches. BMB Rep. 2013;46(12):588–93. doi:10.5483/BMBRep.2013.46.12.081. PubMed DOI PMC

Zuzarte-Luis V, Berciano MT, Lafarga M, Hurle JM. Caspase redundancy and release of mitochondrial apoptotic factors characterize interdigital apoptosis. Apoptosis. 2006;11(5):701–15. doi:10.1007/s10495-006-5481-8. PubMed DOI

Svandova E, Vesela B, Lesot H, Poliard A, Matalová E. Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination. Histochem Cell Biol. 2017;147(4):497–510. doi:10.1007/s00418-016-1508-6. PubMed DOI

Cecil DL, Appleton CT, Polewski MD, Mort JS, Schmidt AM, Bendele A, Beier F, Terkeltaub R. The pattern recognition receptor CD36 is a chondrocyte hypertrophy marker associated with suppression of catabolic responses and promotion of repair responses to inflammatory stimuli. J Immunol. 2009;182(8):5024–31. doi:10.4049/jimmunol.0803603. PubMed DOI PMC

De Valck D, Luyten FP. Caspase inhibition supports proper gene expression in ex vivo mouse limb cultures. Cell Death Differ. 2001;8(10):985–94. doi:10.1038/sj.cdd.4400912. PubMed DOI

Nutall ME, Nadeau DP, Fisher PW, Wang F, Keller PM, DeWolf WE, Jr, Goldring MB, Badger AM, Lee D, Levy MA, Gowen M, Lark MW. Inhibition of caspase-3-like activity prevents apoptosis while retaining functionality of human chondrocytes in vitro. J Orthop Res. 2000;18(3):356–63. doi:10.1002/jor.1100180306. PubMed DOI

Gibson G, Lin DL, Wang X, Zhang L. The release and activation of transforming growth factor β2 associated with apoptosis of chick hypertrophic chondrocytes. J Bone Miner Res. 2001;16(12):2330–8. doi:10.1359/jbmr.2001.16.12.2330. PubMed DOI

Tandon NN, Kralisz U, Jamieson GA. Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion. J Biol Chem. 1989;264(13):7576–83. PubMed

Mercier N, Catimel B, Reck MP, Pellecchia D, McGregor JL. Identification of a functional site on CD36 involved in the interaction between platelets and collagen. Platelets. 1995;6(3):139–45. doi:10.3109/09537109509013266. PubMed DOI

Silverstein RL, Baird M, Lo SK, Yesner LM. Sense and antisense cDNA transfection of CD36 (glycoprotein IV) in melanoma cells. J Biol Chem. 1992;267(23):16607–12. PubMed

Nicholson AC, Febbraio M, Han J, Silverstein RL, Hajjar DP. CD36 in atherosclerosis. The role of a class B macrophage scavenger receptor. Ann N Y Acad Sci. 2000;902:128–33. doi:10.1111/j.1749-6632.2001.tb03944.x. PubMed DOI

Huang MM, Bolen JB, Barnwell JW, Shattil SJ, Brugge JS. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci U S A. 1991;88(17):7844–8. doi:10.1073/pnas.88.17.7844. PubMed DOI PMC

Carron JA, Wagstaff SC, Gallagher JA, Bowler WB. A CD36-binding peptide from trombospondin-1 can stimulate resorption by osteoclasts in vitro. Biochem Biophys Res Commun. 2000;270(3):1124–7. doi:10.1006/bbrc.2000.2574. PubMed DOI

Kevorkova O, Martineau C, Martin-Falstrault L, Sanchez-Dardon J, Brissette L, Moreau R. Low-bone-mass phenotype of deficient mice for the cluster of differentiation 36 (CD36). PLoS ONE. 2013;8(10):e77701. doi:10.1371/journal.pone.0077701. PubMed DOI PMC

Staines KA, Zhu D, Farquharson C, MacRae VE. Identification of novel regulators of osteoblast matrix mineralization by time series transcriptional profiling. J Bone Miner Metab. 2014;32(3):240–51. doi:10.1007/s00774-013-0493-2. PubMed DOI

Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol. 2004;14(2):86–93. doi:10.1016/j.tcb.2003.12.003. PubMed DOI PMC

Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol. 2000;151(4):879–89. doi:10.1083/jcb.151.4.879. PubMed DOI PMC

Littlewood-Evans A, Kokubo T, Ishibashi O, Inaoka T, Wlodarski B, Gallegher JA. Localization of cathepsin K in human osteoclasts by in situ hybridization and immunohistochemistry. Bone. 1997;20(2):81–6. doi:10.1016/S8756-3282(96)00351-1. PubMed DOI

Loeser RF. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol. 2014;39:11–6. doi:10.1016/j.matbio.2014.08.007. PubMed DOI PMC

Kamiya N, Mishina Y. New insights on the roles of BMP signaling in bone—a review of recent mouse genetic studies. Biofactors. 2011;37(2):75–82. doi:10.1002/biof.139. PubMed DOI PMC

Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, Pratt A, Haydon RC, Luu HH, Angeles J, Shi LL, He TC. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 2013;6(8A):32–52. doi:10.4236/jbise.2013.68A1004. PubMed DOI PMC

Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22(4):233–41. doi:10.1080/08977190412331279890. PubMed DOI

Golub EE, Boesze-Battaglia K. The role of alkaline phosphatase in mineralization. Curr Opin Orthop. 2007;18:444–8. doi:10.1097/BCO.0b013e3282630851. DOI

Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76. doi:10.1093/emboj/cdg599. PubMed DOI PMC

Sutherland MK, Geoghegan JC, Yu C, Tucott E, Skonier JE, Winkler DG, Latham JA. Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone. 2004;35(4):828–35. doi:10.1016/j.bone.2004.05.023. PubMed DOI

Gelse K, Poschl E, Aigner T. Collagens—structure, function and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):1531–46. doi:10.1016/j.addr.2003.08.002. PubMed DOI

Ulsamer A, Ortuno MJ, Ruiz S, Susperregui AR, Osses N, Rosa JL, Ventura F. BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem. 2008;283(7):3816–26. doi:10.1074/jbc.M704724200. PubMed DOI

Matalová E, Lesot H, Svandova E, Vanden Berghe T, Sharpe PT, Healy C, Vandenabeele P, Tucker AS. Caspase-7 participates in differentiation of cells forming dental hard tissues. Dev Growth Differ. 2013;55(5):615–21. doi:10.1111/dgd.12066. PubMed DOI

Pucci B, Adams CS, Fertala J, Snyder BC, Mansfield KD, Tafani M, Freeman T, Shapiro IM. Development of the terminally differentiated state sensitizes epiphyseal chondrocytes to apoptosis through caspase-3 activation. J Cell Physiol. 2007;210(3):609–5. doi:10.1002/jcp.20857. PubMed DOI

Blumer MJ, Longato S, Schwarzer C, Fritsch H. Bone development in the femoral epiphysis of mice: the role of cartilage canals and the fate of resting chondrocytes. Dev Dyn. 2007;236(8):2077–88. doi:10.1002/dvdy.21228. PubMed DOI

Chrysis D, Nilsson O, Ritzen EM, Savendahl L. Apoptosis is developmentally regulated in rat growth plate. Endocrine. 2002;18(3):271–8. doi:10.1385/ENDO:18:3:271. PubMed DOI

Krajewska M, Wang HG, Krajewski S, Zapata JM, Shabaik A, Gascoyne R, Reed JC. Immunohistochemical analysis of in vivo patterns of expression of CPP32 (Caspase-3), a cell death protease. Cancer Res. 1997;57(8):1605–13. PubMed

Trieb K, Cetin E, Girsch W, Brand G. Distinct expression of Apo-1 and caspase-8 in human growth plate. Eur Cell Mat. 2003;5(2):57–8. PubMed

Roach HI, Erenpreisa J, Aigner T. Osteogenic differentiation of hypertrophic chondrocytes involves asymmetric cell divisions and apoptosis. J Cell Biol. 1995;131(2):483–94. PubMed PMC

Zenmyo M, Komiya S, Kawabata R, Sasaguri Y, Inoue A, Morimatsu M. Morphological and biochemical evidence for apoptosis in the terminal hypertrophic chondrocytes of the growth plate. J Pathol. 1996;180(4):430–3. doi:10.1002/(SICI)1096-9896(199612)180:4<430::AID-PATH691>3.0.CO;2-H. PubMed DOI

Salmena L, Lemmers B, Hakem A, Matysiak-Zablocki E, Murakami K, Au PY, Berry DM, Tamblyn L, Shehabeldin A, Migon E, Wakeham A, Bouchard D, Yeh WC, McGlade JC, Ohashi PS, Hakem R. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev. 2003;17(7):883–95. doi:10.1101/gad.1063703. PubMed DOI PMC

De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, Kroemer G, Vainchenker W, Debili N. Platelet formation is the consequence of caspase activation within megakaryotes. Blood. 2002;100(4):1310–7. doi:10.1182/blood-2002-03-0686. PubMed DOI

Sadowski-Debbing K, Coy JF, Mier W, Hug H, Los M. Caspases—their role in apoptosis and other physiological processes as revealed by knock-out studies. Arch Immunol Ther Exp (Warsz). 2002;50(1):19–34. PubMed

Larsen BD, Rampalli S, Burns LE, Brunette S, Dilworth FJ, Megeney LA. Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc Natl Acad Sci U S A. 2010;107(9):4230–5. doi:10.1073/pnas.0913089107. PubMed DOI PMC

Basu S, Rajakaruna S, Menko AS. Insulin-like growth factor receptor-1 and nuclear factor κB are crucial survival signals that regulate caspase-3-mediated lens epithelial cell differentiation initiation. J Biol Chem. 2012;287(11):8384–97. doi:10.1074/jbc.M112.341586. PubMed DOI PMC

Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, Varet B, Solary E, Hermine O. Caspase activation is required for terminal erythroid differentiation. J Exp Med. 2001;193(2):247–54. doi:10.1084/jem.193.2.247. PubMed DOI PMC

Sordet O, Rebe C, Plenchette S, Zermati Y, Hermine O, Vainchenker W, Garrido C, Solary E, Dubrez-Daloz L. Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood. 2002;100(13):4446–53. doi:10.1182/blood-2002-06-1778. PubMed DOI

Nhan TQ, Liles WC, Schwartz SM. Physiological functions of caspases beyond cell death. Am J Pathol. 2006;169(3):729–37. doi:10.2353/ajpath.2006.060105. PubMed DOI PMC

Abraham MC, Shaham S. Death without caspases, caspases without death. Trends Cell Biol. 2004;14(4):184–93. doi:10.1016/j.tcb.2004.03.002. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...