• This record comes from PubMed

Potential of the strain Raoultella sp. KDF8 for removal of analgesics

. 2018 May ; 63 (3) : 273-282. [epub] 20171111

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
RVO61388971 Czech Acad Sci, Inst Microbiol
720414 Grant Agency of Charles University
TH02030337 Technology Agency of the Czech Republic

Links

PubMed 29127620
DOI 10.1007/s12223-017-0563-2
PII: 10.1007/s12223-017-0563-2
Knihovny.cz E-resources

The bacterial strain KDF8 capable of growth in the presence of diclofenac and codeine analgesics was obtained after chemical mutagenesis of nature isolates from polluted soils. The strain KDF8 was identified as Raoultella sp. based on its morphology, biochemical properties, and 16S rRNA gene sequence. It was deposited in the Czech Collection of Microorganisms under the number CCM 8678. A growing culture efficiently removed diclofenac (92% removal) and partially also codeine (about 30% degradation) from culture supernatants within 72 h at 28 °C. The degradation of six analgesics by the whole cell catalyst was investigated in detail. The maximum degradation of diclofenac (91%) by the catalyst was achieved at pHINI of 7 (1 g/L diclofenac). The specific removal rate at high concentrations of diclofenac and codeine increased up to 16.5 mg/gCDW per h and 5.1 mg/gCDW per h, respectively. HPLC analysis identified 4'-hydroxydiclofenac as a major metabolite of diclofenac transformation and 14-hydroxycodeinone as codeine transformation product. The analgesics ibuprofen and ketoprofen were also removed, albeit to a lower extent of 3.2 and 2.0 mg/gCDW per h, respectively. Naproxen and mefenamic acid were not degraded.

See more in PubMed

J Hazard Mater. 2016 Jan 15;301:443-52 PubMed

Mutat Res. 2007 Nov-Dec;636(1-3):178-242 PubMed

Appl Microbiol. 1975 Oct;30(4):650-6 PubMed

Environ Sci Technol. 2009 Feb 1;43(3):597-603 PubMed

Appl Microbiol. 1975 Aug;30(2):262-6 PubMed

Biodegradation. 2009 Jun;20(3):363-73 PubMed

Ecotoxicol Environ Saf. 2003 Jul;55(3):359-70 PubMed

Appl Environ Microbiol. 2005 Oct;71(10):6121-5 PubMed

Microbiology. 2013 Mar;159(Pt 3):621-32 PubMed

Sci Total Environ. 2011 Sep 15;409(20):4351-60 PubMed

Chemosphere. 2004 Aug;56(7):659-66 PubMed

Environ Sci Technol. 2010 Oct 1;44(19):7213-9 PubMed

Arch Microbiol. 1990;154(5):465-70 PubMed

Chemosphere. 2008 Nov;73(8):1151-61 PubMed

Int J Syst Evol Microbiol. 2001 May;51(Pt 3):925-32 PubMed

Biodegradation. 2015 Apr;26(2):105-13 PubMed

Methods Enzymol. 1991;204:114-25 PubMed

Chemosphere. 2007 Jan;66(6):993-1002 PubMed

Environ Pollut. 2012 May;164:267-73 PubMed

Trends Biotechnol. 2005 Apr;23(4):163-7 PubMed

Chemosphere. 2007 Sep;69(4):509-16 PubMed

Mol Biol Evol. 2016 Jul;33(7):1870-4 PubMed

N Biotechnol. 2015 Jan 25;32(1):147-56 PubMed

Biomed Res Int. 2013;2013:325806 PubMed

Chem Biol Interact. 2003 Oct 25;146(2):121-9 PubMed

Biodegradation. 2007 Feb;18(1):27-35 PubMed

Environ Int. 2014 Aug;69:28-39 PubMed

Prikl Biokhim Mikrobiol. 2006 May-Jun;42(3):292-7 PubMed

Microb Biotechnol. 2012 May;5(3):388-95 PubMed

Appl Environ Microbiol. 2001 May;67(5):2197-201 PubMed

Water Res. 2002 Oct;36(17):4307-18 PubMed

Biochem Pharmacol. 1999 Sep 1;58(5):787-96 PubMed

J Am Chem Soc. 2005 May 25;127(20):7286-7 PubMed

J Pharmacol Exp Ther. 2002 Dec;303(3):969-78 PubMed

Water Res. 2009 Feb;43(3):831-41 PubMed

Int J Hyg Environ Health. 2002 Jul;205(5):393-8 PubMed

Biotechnol Adv. 2009 Nov-Dec;27(6):686-714 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...