DNA polymerase η mutational signatures are found in a variety of different types of cancer

. 2018 ; 17 (3) : 348-355. [epub] 20180215

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29139326

Grantová podpora
P30 CA072720 NCI NIH HHS - United States

DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.

Zobrazit více v PubMed

Watson IR, Takahashi K, Futreal PA, et al. . Emerging patterns of somatic mutations in cancer. Nat Rev Genet. 2013;14:703–718. doi:10.1038/nrg3539. PMID:24022702 PubMed DOI PMC

Waddell N, Pajic M, Patch AM, et al. . Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501. doi:10.1038/nature14169. PMID:25719666 PubMed DOI PMC

Wood LD, Hruban RH. Genomic landscapes of pancreatic neoplasia. J Pathol Transl Med. 2015;49:13–22. doi:10.4132/jptm.2014.12.26. PMID:25812653 PubMed DOI PMC

Loeb LA, Springgate CF, Battula N. Errors in DNA replication as a basis of malignant changes. Cancer Res. 1974;34:2311–2321. PMID:4136142 PubMed

Loeb LA. Human cancers express a mutator phenotype: hypothesis, origin, and consequences. Cancer Res. 2016;76:2057–2059. doi:10.1158/0008-5472.CAN-16-0794. PMID:27197248 PubMed DOI PMC

Alexandrov LB, Nik-Zainal S, Wedge DC, et al. . Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi:10.1038/nature12477. PMID:23945592 PubMed DOI PMC

Roberts SA, Gordenin DA. Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer. 2014;14:786–800. doi:10.1038/nrc3816. PMID:25568919 PubMed DOI PMC

Pfeifer GP. How the environment shapes cancer genomes. Curr Opin Oncol. 2015;27:71–77. doi:10.1097/CCO.0000000000000152. PMID:25402978 PubMed DOI PMC

Albertson TM, Ogawa M, Bugni JM, et al. . DNA polymerase epsilon and delta proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci U S A. 2009;106:17101–17104. doi:10.1073/pnas.0907147106. PMID:19805137 PubMed DOI PMC

Burns MB, Lackey L, Carpenter MA, et al. . APOBEC3B is an enzymatic source of mutation in breast cancer. Nature. 2013;494:366–370. doi:10.1038/nature11881. PMID:23389445 PubMed DOI PMC

Heintel D, Kroemer E, Kienle D, et al. . High expression of activation-induced cytidine deaminase (AID) mRNA is associated with unmutated IGVH gene status and unfavourable cytogenetic aberrations in patients with chronic lymphocytic leukaemia. Leukemia. 2004;18:756–762. doi:10.1038/sj.leu.2403294. PMID:14961036 PubMed DOI

Qian J, Wang Q, Dose M, et al. . B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell. 2014;159:1524–1537. doi:10.1016/j.cell.2014.11.013. PMID:25483777 PubMed DOI PMC

Fishel R, Kolodner RD. Identification of mismatch repair genes and their role in the development of cancer. Curr Opin Genet Dev. 1995;5:382–395. doi:10.1016/0959-437X(95)80055-7. PubMed DOI

Heitzer E, Tomlinson I. Replicative DNA polymerase mutations in cancer. Curr Opin Genet Dev. 2014;24:107–113. doi:10.1016/j.gde.2013.12.005. PubMed DOI PMC

Barbari SR, Shcherbakova PV. Replicative DNA polymerase defects in human cancers: consequences, mechanisms, and implications for therapy. DNA Repair (Amst). 2017;56:16–25. doi:10.1016/j.dnarep.2017.06.003. PMID:28687338 PubMed DOI PMC

Scully R. Role of BRCA gene dysfunction in breast and ovarian cancer predisposition. Breast Cancer Res: BCR. 2000;2:324–230. doi:10.1186/bcr76. PMID:11250724 PubMed DOI PMC

Masutani C, Kusumoto R, Yamada A, et al. . The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature. 1999;399:700–704. doi:10.1038/21447. PMID:10385124 PubMed DOI

Saini N, Roberts SA, Klimczak LJ, et al. . The impact of environmental and endogenous damage on somatic mutation load in human skin fibroblasts. PLoS Genet. 2016;12:e1006385. doi:10.1371/journal.pgen.1006385. PMID:27788131 PubMed DOI PMC

Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S A. 2010;107:961–968. doi:10.1073/pnas.0912629107. PMID:20080596 PubMed DOI PMC

Martincorena I, Roshan A, Gerstung M, et al. . Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Sci (New York, NY). 2015;348:880–886. doi:10.1126/science.aaa6806. PubMed DOI PMC

Washington MT, Johnson RE, Prakash L, et al. . Accuracy of lesion bypass by yeast and human DNA polymerase eta. Proc Natl Acad Sci U S A. 2001;98:8355–8360. doi:10.1073/pnas.121007298. PMID:11459975 PubMed DOI PMC

Matsuda T, Bebenek K, Masutani C, et al. . Low fidelity DNA synthesis by human DNA polymerase h. Nature. 2000;404:1011–1013. doi:10.1038/35010014. PMID:10801132 PubMed DOI

Matsuda T, Bebenek K, Masutani C, et al. . Error rate and specificity of human and murine DNA polymerase eta. J Mol Biol. 2001;312:335–346. doi:10.1006/jmbi.2001.4937. PMID:11554790 PubMed DOI

Pavlov YI, Shcherbakova PV, Rogozin IB. Roles of DNA polymerases in replication, repair, and recombination in eukaryotes. Int Rev Cytol. 2006;255:41–132. doi:10.1016/S0074-7696(06)55002-8. PMID:17178465 PubMed DOI

Johnson RE, Kondratick CM, Prakash S, et al. . hRAD30 mutations in the variant form of xeroderma pigmentosum. Science (New York, NY). 1999;285:263–265. doi:10.1126/science.285.5425.263. PubMed DOI

Petljak M, Alexandrov LB. Understanding mutagenesis through delineation of mutational signatures in human cancer. Carcinogenesis. 2016;37:531–540. doi:10.1093/carcin/bgw055. PMID:27207657 PubMed DOI

Rogozin IB, Pavlov YI, Goncearenco A, et al. . Mutational signatures and mutable motifs in cancer genomes. Brief Bioinform. 2017. doi:10.1093/bib/bbx049. PMID:28498882 PubMed DOI PMC

Zanotti KJ, Gearhart PJ. Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst). 2016;38:110–116. doi:10.1016/j.dnarep.2015.11.011. PMID:26719140 PubMed DOI PMC

Rogozin IB, Pavlov YI, Bebenek K, et al. . Somatic mutation hotspots correlate with DNA polymerase eta error spectrum. Nat Immunol. 2001;2:530–536. doi:10.1038/88732. PMID:11376340 PubMed DOI

Zeng X, Winter DB, Kasmer C, et al. . DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nat Immunol. 2001;2:537–541. doi:10.1038/88740. PMID:11376341 PubMed DOI

Supek F, Lehner B. Clustered mutation signatures reveal that error-prone DNA repair targets mutations to active genes. Cell. 2017;170:534.e23–47.e23. doi:10.1016/j.cell.2017.07.003. PubMed DOI

McCulloch SD, Kokoska RJ, Masutani C, et al. . Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature. 2004;428:97–100. doi:10.1038/nature02352. PMID:14999287 PubMed DOI

Saribasak H, Maul RW, Cao Z, et al. . DNA polymerase zeta generates tandem mutations in immunoglobulin variable regions. J Exp Med. 2012;209:1075–1081. doi:10.1084/jem.20112234. PMID:22615128 PubMed DOI PMC

Maul RW, MacCarthy T, Frank EG, et al. . DNA polymerase iota functions in the generation of tandem mutations during somatic hypermutation of antibody genes. J Exp Med. 2016;213:1675–1683. doi:10.1084/jem.20151227. PMID:27455952 PubMed DOI PMC

Lee DH, Pfeifer GP. Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis. J Biol Chem. 2003;278:10314–10321. doi:10.1074/jbc.M212696200. PMID:12525487 PubMed DOI

Rogozin IB, Lada AG, Goncearenco A, et al. . Activation induced deaminase mutational signature overlaps with CpG methylation sites in follicular lymphoma and other cancers. Sci Rep. 2016;6:38133. doi:10.1038/srep38133. PMID:27924834 PubMed DOI PMC

Lada AG, Kliver SF, Dhar A, et al. . Disruption of transcriptional coactivator Sub1 leads to genome-wide re-distribution of clustered mutations induced by APOBEC in active yeast genes. PLoS Genet. 2015;11:e1005217. doi:10.1371/journal.pgen.1005217. PMID:25941824 PubMed DOI PMC

Taylor BJ, Wu YL, Rada C. Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes. Elife. 2014;3:e03553. doi:10.7554/eLife.03553. PMID:25237741 PubMed DOI PMC

Alexandrov LB, Stratton MR. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr Opin Genet Dev. 2014;24:52–60. doi:10.1016/j.gde.2013.11.014. PubMed DOI PMC

Green MR, Kihira S, Liu CL, et al. . Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc Natl Acad Sci U S A. 2015;112:E1116–E1125. doi:10.1073/pnas.1501199112. PMID:25713363 PubMed DOI PMC

Temiz NA, Donohue DE, Bacolla A, et al. . The somatic autosomal mutation matrix in cancer genomes. Hum Genet. 2015;134:851–864. doi:10.1007/s00439-015-1566-1. PMID:26001532 PubMed DOI PMC

Laffleur B, Denis-Lagache N, Peron S, et al. . AID-induced remodeling of immunoglobulin genes and B cell fate. Oncotarget. 2014;5:1118–1131. doi:10.18632/oncotarget.1546. PMID:24851241 PubMed DOI PMC

Yadav VK, DeGregori J, De S. The landscape of somatic mutations in protein coding genes in apparently benign human tissues carries signatures of relaxed purifying selection. Nucleic Acids Res. 2016;44:2075–2084. doi:10.1093/nar/gkw086. PMID:26883632 PubMed DOI PMC

Makridakis NM, Reichardt JK. Translesion DNA polymerases and cancer. Front Genet. 2012;3:174. doi:10.3389/fgene.2012.00174. PMID:22973298 PubMed DOI PMC

CGAN Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. doi:10.1038/nature11252. PMID:22810696 PubMed DOI PMC

CGARN Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–615. doi:10.1038/nature10166. PMID:21720365 PubMed DOI PMC

Roberts SA, Lawrence MS, Klimczak LJ, et al. . An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 2013;45:970–976. doi:10.1038/ng.2702. PMID:23852170 PubMed DOI PMC

Pavlov YI, Rogozin IB, Galkin AP, et al. . Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase eta during copying of a mouse immunoglobulin kappa light chain transgene. Proc Natl Acad Sci U S A. 2002;99:9954–9959. doi:10.1073/pnas.152126799. PMID:12119399 PubMed DOI PMC

Mayorov VI, Rogozin IB, Adkison LR, et al. . DNA polymerase eta contributes to strand bias of mutations of A versus T in immunoglobulin genes. J Immunol. 2005;174:7781–7786. doi:10.4049/jimmunol.174.12.7781. PubMed DOI

Bebenek K, Matsuda T, Masutani C, et al. . Proofreading of DNA polymerase eta-dependent replication errors. J Biol Chem. 2001;276:2317–2320. doi:10.1074/jbc.C000690200. PMID:11113111 PubMed DOI

Pavlov YI, Nguyen D, Kunkel TA. Mutator effects of overproducing DNA polymerase eta (Rad30) and its catalytically inactive variant in yeast. Mutat Res. 2001;478:129–139. doi:10.1016/S0027-5107(01)00131-2. PMID:11406177 PubMed DOI

Lerner LK, Francisco G, Soltys DT, et al. . Predominant role of DNA polymerase eta and p53-dependent translesion synthesis in the survival of ultraviolet-irradiated human cells. Nucleic Acids Res. 2017;45:1270–1280. doi:10.1093/nar/gkw1196. PMID:28180309 PubMed DOI PMC

Ziv O, Zeisel A, Mirlas-Neisberg N, et al. . Identification of novel DNA-damage tolerance genes reveals regulation of translesion DNA synthesis by nucleophosmin. Nat Commun. 2014;5:5437. doi:10.1038/ncomms6437. PMID:25421715 PubMed DOI PMC

Chan K, Roberts SA, Klimczak LJ, et al. . An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet. 2015;47:1067–1072. doi:10.1038/ng.3378. PMID:26258849. PubMed DOI PMC

Goncearenco A, Rager SL, Li M, et al. . Exploring background mutational processes to decipher cancer genetic heterogeneity. Nucleic Acids Res. 2017;45:W514–W522. doi:10.1093/nar/gkx367. PMID:28472504. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...