Multiple-Level Porous Polymer Monoliths with Interconnected Cellular Topology Prepared by Combining Hard Sphere and Emulsion Templating for Use in Bone Tissue Engineering
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29205840
DOI
10.1002/mabi.201700306
Knihovny.cz E-zdroje
- Klíčová slova
- bone tissue engineering, hierarchical materials, polymer scaffolds, porous materials, thiol-ene polymerization,
- MeSH
- emulze chemie MeSH
- kosti a kostní tkáň fyziologie MeSH
- lidé MeSH
- modul pružnosti MeSH
- osteoblasty cytologie MeSH
- polymethylmethakrylát chemie MeSH
- poréznost MeSH
- teplota MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- tvrdost MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- emulze MeSH
- polymethylmethakrylát MeSH
A combination of hard sphere and high internal phase emulsion templating gives a platform for synthesizing hierarchically porous polymers with a unique topology exhibiting interconnected spherical features on multiple levels. Polymeric spheres are fused by thermal sintering to create a 3D monolithic structure while an emulsion with a high proportion of internal phase and monomers in the continuous phase is added to the voids of the previously constructed monolith. Following polymerization of the emulsion and dissolution of the templating structure, a down-replicating topology is created with a primary level of pores as a result of fused spheres of the 3D monolithic structure, a secondary level of pores resulting from the emulsion's internal phase, and a tertiary level of interconnecting channels. Thiol-ene chemistry with divinyladipate and pentaerythritol tetrakis(3-mercaptopropionate) is used to demonstrate the preparation of a crosslinked polyester with overall porosity close to 90%. Due to multilevel porosity, such materials are interesting for applications in bone tissue engineering, possibly simulating the native sponge like bone structure. Their potential to promote ossteointegration is tested using human bone derived osteoblasts. Material-cell interactions are evaluated and they reveal growth and proliferation of osteoblasts both on surface and in the bulk of the scaffold.
Faculty of Medicine University of Maribor Taborska ulica 8 2000 Maribor Slovenia
Faculty of Natural Sciences and Mathematics University of Maribor Koroška 160 2000 Maribor Slovenia
Citace poskytuje Crossref.org