Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production
Jazyk angličtina Země Švýcarsko Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
306079/2013-5
Conselho Nacional de Desenvolvimento Científico e Tecnológico
2016
Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão
PubMed
29290031
DOI
10.1007/s12033-017-0056-1
PII: 10.1007/s12033-017-0056-1
Knihovny.cz E-zdroje
- Klíčová slova
- Genetically engineered cultures, In vitro culture, Natural products, Secondary metabolites, Synthetic biology,
- MeSH
- artemisininy izolace a purifikace metabolismus MeSH
- axenická kultura MeSH
- berberin izolace a purifikace metabolismus MeSH
- biologické přípravky izolace a purifikace metabolismus MeSH
- biotechnologie metody MeSH
- buněčné kultury MeSH
- fytonutrienty biosyntéza izolace a purifikace MeSH
- metabolické inženýrství metody MeSH
- naftochinony izolace a purifikace metabolismus MeSH
- paclitaxel biosyntéza izolace a purifikace MeSH
- rostlinné buňky chemie metabolismus MeSH
- rostliny chemie genetika metabolismus MeSH
- sekundární metabolismus MeSH
- techniky tkáňových kultur MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- artemisinin MeSH Prohlížeč
- artemisininy MeSH
- berberin MeSH
- biologické přípravky MeSH
- fytonutrienty MeSH
- naftochinony MeSH
- paclitaxel MeSH
- shikonin MeSH Prohlížeč
Plant secondary metabolism evolved in the context of highly organized and differentiated cells and tissues, featuring massive chemical complexity operating under tight environmental, developmental and genetic control. Biotechnological demand for natural products has been continuously increasing because of their significant value and new applications, mainly as pharmaceuticals. Aseptic production systems of plant secondary metabolites have improved considerably, constituting an attractive tool for increased, stable and large-scale supply of valuable molecules. Surprisingly, to date, only a few examples including taxol, shikonin, berberine and artemisinin have emerged as success cases of commercial production using this strategy. The present review focuses on the main characteristics of plant specialized metabolism and their implications for current strategies used to produce secondary compounds in axenic cultivation systems. The search for consonance between plant secondary metabolism unique features and various in vitro culture systems, including cell, tissue, organ, and engineered cultures, as well as heterologous expression in microbial platforms, is discussed. Data to date strongly suggest that attaining full potential of these biotechnology production strategies requires being able to take advantage of plant specialized metabolism singularities for improved target molecule yields and for bypassing inherent difficulties in its rational manipulation.
Faculty of Health and Life Sciences De Montfort University The Gateway Leicester LE1 9BH UK
Plant Physiology Laboratory Faculty of Pharmacy University of Barcelona Barcelona Spain
Zobrazit více v PubMed
Trends Genet. 2010 Oct;26(10):449-57 PubMed
Crit Rev Biotechnol. 2013 Mar;33(1):1-22 PubMed
Methods Mol Biol. 2010;643:1-13 PubMed
Crit Rev Biotechnol. 2007 Jan-Mar;27(1):29-43 PubMed
FEBS Lett. 2010 Jul 16;584(14):2965-73 PubMed
Biotechnol Adv. 2008 Jul-Aug;26(4):318-24 PubMed
Protoplasma. 2015 Sep;252(5):1189-201 PubMed
Biomed Res Int. 2013;2013:780145 PubMed
Crit Rev Biotechnol. 2016;36(2):327-40 PubMed
Plant Physiol Biochem. 2013 Dec;73:33-40 PubMed
Annu Rev Genet. 2015;49:71-94 PubMed
J Plant Physiol. 2010 Jun 15;167(9):749-56 PubMed
Biotechnol Lett. 2014 Feb;36(2):191-200 PubMed
Front Microbiol. 2016 Mar 14;7:318 PubMed
Nat Prod Res. 2013 Mar;27(4-5):402-11 PubMed
Plant Biol (Stuttg). 2010 Jul 1;12(4):570-7 PubMed
Cell Biol Int. 2011 Feb;35(2):153-8 PubMed
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):E623-32 PubMed
J Nat Prod. 2016 Mar 25;79(3):629-61 PubMed
Biotechnol Lett. 2010 Nov;32(11):1739-43 PubMed
Plant Signal Behav. 2011 Nov;6(11):1720-31 PubMed
Adv Biochem Eng Biotechnol. 2015;149:275-324 PubMed
Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):717-35 PubMed
Methods Mol Biol. 2010;643:185-200 PubMed
Chem Rev. 2015 Sep 9;115(17 ):9207-31 PubMed
Adv Biochem Eng Biotechnol. 2013;134:1-22 PubMed
J Biosci Bioeng. 2005 Jan;99(1):43-7 PubMed
New Phytol. 2013 Oct;200(1):27-43 PubMed
Plant Physiol Biochem. 2012 Jul;56:41-6 PubMed
Science. 2015 Sep 4;349(6252):1095-100 PubMed
Plant Methods. 2016 Jan 28;12:8 PubMed
Cancers (Basel). 2015 Dec 03;7(4):2360-71 PubMed
Nat Rev Genet. 2008 May;9(5):383-95 PubMed
Adv Biochem Eng Biotechnol. 2015;148:161-99 PubMed
Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6786-91 PubMed
Plant Cell Rep. 2015 Nov;34(11):1939-52 PubMed
Plant Biotechnol J. 2012 May;10(4):435-42 PubMed
J Exp Bot. 2012 May;63(9):3353-65 PubMed
Front Plant Sci. 2016 Feb 23;7:187 PubMed
Biotechnol Appl Biochem. 2015 Mar-Apr;62(2):193-9 PubMed
Planta. 2015 Feb;241(2):303-17 PubMed
Curr Opin Plant Biol. 2014 Jun;19:43-50 PubMed
Biotechnol Adv. 2014 Nov 1;32(6):1168-79 PubMed
Genome Biol. 2008;9(8):R130 PubMed
Plant Cell Rep. 2008 Jun;27(6):1039-52 PubMed
3 Biotech. 2017 May;7(1):21 PubMed
Curr Opin Plant Biol. 2005 Jun;8(3):280-91 PubMed
BMB Rep. 2016 Mar;49(3):149-58 PubMed
Biotechnol Bioeng. 2015 Jan;112(1):1-12 PubMed
PLoS One. 2012;7(8):e43038 PubMed
Metab Eng. 2011 Mar;13(2):234-40 PubMed
Trends Plant Sci. 2012 Jun;17(6):349-59 PubMed
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2343-8 PubMed
Planta. 2006 May;223(6):1344-54 PubMed
Biotechnol Adv. 2014 Jan-Feb;32(1):215-29 PubMed
Plant Cell Tissue Organ Cult. 2013 Mar 1;112(3):303-310 PubMed
Front Plant Sci. 2017 Mar 29;8:374 PubMed
Science. 2016 Nov 18;354(6314):890-893 PubMed
Methods Mol Biol. 2010;643:145-63 PubMed
Mol Plant Microbe Interact. 2009 Feb;22(2):132-42 PubMed
Plant Sci. 2011 Mar;180(3):439-46 PubMed
PLoS Biol. 2011 Aug;9(8):e1001125 PubMed
Trends Biotechnol. 2012 Oct;30(10):528-37 PubMed
Plant Physiol Biochem. 2013 May;66:56-62 PubMed
BMC Genomics. 2008 Nov 26;9:561 PubMed
Trends Plant Sci. 2014 Jul;19(7):447-59 PubMed
Biotechnology (N Y). 1992 Dec;10(12):1572-5 PubMed
Biotechnol Bioeng. 1994 Oct;44(8):967-71 PubMed
Appl Microbiol Biotechnol. 2016 Jul;100(14 ):6119-30 PubMed
Curr Opin Biotechnol. 2015 Apr;32:156-62 PubMed
Biotechnol Bioeng. 2005 Mar 20;89(6):647-55 PubMed
Plant Cell Rep. 2016 Jan;35(1):143-53 PubMed
N Biotechnol. 2017 Oct 7;:null PubMed
Curr Opin Biotechnol. 2013 Apr;24(2):263-70 PubMed
Nature. 2013 Apr 25;496(7446):528-32 PubMed
Curr Opin Plant Biol. 2006 Jun;9(3):341-6 PubMed
Nat Biotechnol. 2008 Nov;26(11):1301-8 PubMed
Crit Rev Biotechnol. 2016;36(2):215-32 PubMed
Int J Mol Sci. 2013 Jul 17;14(7):14950-73 PubMed
Pharm Biol. 2010 Dec;48(12):1421-5 PubMed
Phytochemistry. 2007 Nov-Dec;68(22-24):2831-46 PubMed
Biotechnol Prog. 2010 Jul-Aug;26(4):1145-53 PubMed
Annu Rev Plant Biol. 2008;59:735-69 PubMed
Molecules. 2016 Feb 03;21(2):182 PubMed
Curr Opin Plant Biol. 2014 Jun;19:35-42 PubMed
Nat Prod Commun. 2015 Jan;10(1):209-18 PubMed
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15830-5 PubMed
Curr Opin Biotechnol. 2014 Apr;26:91-9 PubMed
Curr Opin Biotechnol. 2013 Apr;24(2):239-46 PubMed
J Biosci Bioeng. 2006 Apr;101(4):287-96 PubMed
Plant Physiol. 2008 Oct;148(2):730-50 PubMed